C O M M U N I C A T I O N S
Scheme 2a
the glycosyl fluoride 21 also ensued (18%). However, this problem
is avoided by using (C6F5)3B (3 mol %)16 as a glycosylation catalyst
to afford the glycoconjugate 26 (59%, R: â 1:7, plus 15% of 22
and 21% of 25) with no evidence of unwanted glycosyl fluoride
21.
Being mindful of the hydrolytic instability of the fatty acyl chain
in QS-21A,1 exchange of the ester protecting groups in 26 to
alternate groups that would be readily removable in the projected
final steps of the synthesis include: (1) base-mediated ester group
hydrolysis, (2) benzylation of the glucuronic acid carboxylate group,
(3) protection of the remaining hydroxyl groups as the TES ethers,
and (4) removal of the allyl ester in the triterpene (75%, four steps)
to provide 27. The final convergent step involves the glycosylation
of 27 with the acylated tetrasaccharide 20 (BF3‚OEt2)15 to afford
fully protected QS-21Aapi 28 (70%). Finally, mild acid hydrolysis
of the isopropylidene ketal and of the silicon ethers is accomplished
with TFA/H2O (4:1 v:v), without compromising the glycosidic
linkages nor the ester linkages on the acyl chain. Subsequent
hydrogenolysis of all benzylic protecting groups (H2, Pd/C) occurs
efficiently without reduction of the trisubstituted alkene, providing
synthetic QS-21Aapi (1, 75%).17
With the completion of the first synthesis of QS-21Aapi (1), its
structure has been verified, and availability of this powerful clinical
immunostimulant has been expanded to synthetic sources. Genera-
tion of analogues of 1 is underway to probe its mechanism of
immunostimulatory activity, which has yet to be ascertained.1b
a Reagents and conditions: (a) 10, Ph2SO, Tf2O, -78 °C, then 11, -78
°C to 23 °C, 66%; (b) 12, TESOTf, 0 °C, 51%; (c) K2CO3, 23 °C; (d)
C6H5CH(OMe)2, pTsOH, 23 °C; (e) TBAF, 23 °C, 95% (three steps); (f)
Ph2SO, Tf2O,-78 °C, then 13, -78 °C to 23 °C, 54%; (g) K2CO3, 40 °C,
>99%; (h) 9, 2,4,6-C6H2Cl3COCl, Et3N, 23 °C, then 17, DMAP, 90%; (i)
TBAF, 0 °C, 81%; (j) CCl3CN, DBU, 0 °C, 56% (40% recovered 19).
Acknowledgment. This research was supported by the NIH
(GM58833).
Scheme 3a
Supporting Information Available: Complete refs 3a,b; experi-
mental procedures and spectroscopic data for synthetic intermediates.
This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) (a) Kensil, C. R.; Patel, U.; Lennick, M.; Marciani, D. J. Immunol. 1991,
148, 431. (b) Kensil, C. R. Crit. ReV. Ther. Drug Carrier Syst. 1996, 13, 1.
(2) (a) Jacobsen, N. E.; Fairbrother, W. J.; Kensil, C. R.; Lim, A.; Wheeler,
D. A.; Powell, M. F. Carbohydr. Res. 1996, 280, 1. (b) Zhu, X.; Yu, B.;
Hui, Y.; Higuchi, R.; Kusano, T.; Miyamoto, T. Tetrahedron Lett. 2000,
41, 717.
(3) See, inter alia: (a) Evans, T. G. et al. Vaccine 2001, 19, 2080. (b) Gilewski,
T. et al. Proc. Natl. Acad. Sci., U.S.A. 2001, 98, 3270. (c) Krug, L. M.;
Ragupathi, G.; Hood, C.; Kris, M. G.; Miller, V. A.; Allen, J. R.; Keding,
S. J.; Danishefsky, S. J.; Gomez, J.; Tyson, L.; Pizzo, B.; Baez, V.;
Livingston P. O. Clin. Cancer Res. 2004, 10, 6094, and references therein.
(4) The absolute configurations of the individual monosaccharide constituents
within 1 have heretofore only been assumed based on natural abundance.
(5) Previous synthetic efforts: (a) Kim, Y.-J.; Gin, D. Y. Org. Lett. 2001, 3,
1801. (b) Zhu, X.; Yu, B.; Hui, Y.; Schmidt, R. R. Eur. J. Org. Chem.
2004, 965.
(6) Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 5919.
(7) Braun, M.; Waldmu¨ller, D. Synthesis 1989, 856.
(8) (a) Garcia, B. A.; Poole, J. L.; Gin, D. Y. J. Am. Chem. Soc. 1997, 119,
7597. (b) Garcia, B. A.; Gin, D. Y. J. Am. Chem. Soc. 2000, 122, 4269.
(9) Lee, R. E.; Mikusˇova´, K.; Brennan, P. J.; Besra, G. S. J. Am. Chem. Soc.
1995, 117, 11829.
(10) Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem.
Soc. Jpn. 1979, 52, 1989.
(11) See Supporting Information for the preparation of 10, 11 and 13.
(12) Roush, W. R.; Bennett, C. E.; Roberts, S. E. J. Org. Chem. 2001, 66,
6389.
(13) Mba¨ıraroua, O.; Ton-That, T.; Tapie´ro, C. Carbohydr. Res. 1994, 253, 79.
(14) Elliott, D. F.; Kon, G. A. R. J. Chem. Soc. 1939, 1130.
(15) Schmidt, R. R.; Kinzy, W. AdV. Carbohydr. Chem. Biochem. 1994, 50,
21.
(16) Ishihara, K.; Yamamoto, H. Eur. J. Org. Chem. 1999, 527.
(17) RP-HPLC, 1HNMR, and MS data of synthetic 1 were identical to those
of natural 1, obtained by RP-HPLC of Quil A (Accurate Chemical &
Scientific Corp.), a Quillaja extract known to contain traces of 1.
a Reagents and conditions: (a) CCl3CN, DBU, 0 °C, 95%; (b) Cs2CO3,
allylBr, 0 °C, 70%; (c) (B(C6F5)3), 23 °C, 59%, (R: â 1:7), (plus 15% 22
and 21% 25); (d) NaOH, 23 °C, then Cs2CO3, H2O, 58 °C; (e) KHCO3,
BnBr, 23 °C, 92% (two steps); (f) TESOTf, 2,6-lutidine, 23 °C; (g) HCO2H,
Pd(OAc)2), Et3N, PPh3, 23 °C, 81% (two steps); (h) BF3‚OEt2, 20, -78
°C, 70%; (i) TFA, H2O, 0 °C; (j) 150 psi H2, Pd/C, 23 °C, 75% (two steps).
22 (95%), with 25 and BF3‚OEt2 catalysis.15 While some of the
â-glycoconjugate 26 is formed (33%), competitive formation of
JA0422007
9
J. AM. CHEM. SOC. VOL. 127, NO. 10, 2005 3257