200
D. Dang et al. / Journal of Molecular Structure 743 (2005) 197–200
4. Supplementary material
0.020
0.016
0.012
0.008
0.004
0.000
0.025
0.020
0.015
0.010
0.005
0.000
CCDC 262186 contains the supplementary crystallo-
graphic data for this paper. These data can be obtained free
(or from the Cambridge Crystallographic Data Centre,
12 Union Road, Cambridge CB2 1EZ, UK; fax: C44 1223
336033).
T
T
0
10
20
30
40
50
60
T/ K
Acknowledgements
0
50
100
150
200
250
300
Financial support from the National Natural Science
Foundation (No. 20490218), The Center of Analysis and
Determination of Nanjing University are acknowledged.
T / K
Fig. 4. Plot of cm versus T for 2. The solid line represents the best fit; inset:
plot of dcmT/dT versus T for 2.
the value of 0.011 emu molK1 at 2.0 K. The value of cmT at
300 K is 0.38 emu K molK1, which is slightly larger than that
of a spin-only value (SZ1/2) per formula unit. With
decreasing temperature, the cmT value first decreases slightly
till reaching 0.33 emu K molK1 at 50 K, and then
decreases rapidly below this temperature till reaching
0.02 emu K molK1 at 2 K. The Neel temperature (TN) of
complex 2, which may be estimated from the sharp peak of
d(cmT)/dT at 5.0 K shown in the inset of Fig. 3 [17,18]. The
magnetic data above 10 K can be fitted well to the Curie–
Weiss law with CZ0.42 emu K molK1, qZK10.6 K, and
References
[1] P.I. Clemenson, Coord. Chem. Rev. 106 (1990) 171.
[2] N. Robertson, L. Cronin, Coord. Chem. Rev. 227 (2002) 93.
´
[3] A.T. Coomber, D. Beljonne, R.H. Friend, J.L. Bredas, A. Charlton,
N. Robertson, A.E. Underhill, M. Kurmoo, P. Day, Nature 380
(1996) 144.
[4] A.E. Pullen, C. Faulmann, K.I. Pokhodnya, P. Cassoux,
M. Tokumoto, Inorg. Chem. 37 (1998) 6714.
[5] T. Waters, X.B. Wang, X. Yang, L. Zhang, R.A.J. O’Hair, L.S. Wang,
A.G. Wedd, J. Am. Chem. Soc. 126 (2004) 5119.
[6] X.M. Ren, Q.J. Meng, Y. Song, C.L. Lu, C.J. Hu, X.Y. Chen,
Z.L. Xue, Inorg. Chem. 41 (2002) 5931.
P
P
the agreement factor RZ (combsKcmcalc)2/ (cmobs)2Z
2.58!10K8. The negative value of Weiss temperature
indicates that the antiferromagnetic exchange coupling
between Ni(III) ions dominates the magnetic properties of
the complex.
[7] X.M. Ren, Q.J. Meng, Y. Song, C.S. Lu, C.J. Hu, X.Y. Chen, Inorg.
Chem. 41 (2002) 5686.
[8] J.L. Xie, X.M. Ren, Y. Song, W.W. Zhang, W.L. Liu, C. He,
Q.J. Meng, Chem. Commun. 2002; 2346.
[9] J.L. Xie, X.M. Ren, Y. Song, Y. Zou, Q.J. Meng, J. Chem. Soc.,
Dalton Trans. 2002; 2868.
In this work, a new ion–pair complex, 1-methyl-3-
benzylbenzimidazolium bis(maleonitrile-dithiolato)nicke-
late(III), has been synthesized. The X-ray structure
characterization shows the Ni(mnt)K2 anions and [MeBzB-
zim]C cations are alternately stacked. The p–p stacking
interactions and the weak interactions between adjacent
anions give rise to a three-dimensional supermolecular
structure. The variable temperature magnetic suscepti-
bilities investigation indicates that the antiferromagnetic
exchange coupling between Ni(III) ions through the
exchange pathways of p–p stacking interactions dominates
the magnetic properties of the complex and the Neel
temperature (TN) at 5.0 K is observed.
[10] J.L. Xie, X.M. Ren, C. He, Y. Song, Q.J. Meng, R.K. Kremer,
Y.G. Yao, Chem. Phys. Lett. 396 (2003) 41.
[11] C.L. Ni, D.B. Dang, Y. Song, S. Gao, Y.Z. Li, Z.P. Ni, Z.F. Tian,
L.L. Wen, Q.J. Meng, Chem. Phys. Lett. 396 (2003) 353.
[12] X.M. Ren, H. Okudera, R.K. Kremer, Y. Song, C. He, Q.J. Meng,
P.H. Wu, Inorg. Chem. 43 (2004) 2569.
[13] Y. Kikugawa, Synthesis 1981; 124.
[14] A. Davison, R.H. Holm, Inorg. Synth. 10 (1967) 8.
[15] SHELXTL, Version 5.10, Structure Determination Software Programs,
Bruker Analytical X-ray Systems Inc., Madison, WI, USA.
[16] K.W. Plumlee, B.M. Hoffman, J.A. Ibers, J. Chem. Phys. 63 (1975)
1926.
[17] M.E. Fisher, Proc. R. Soc. (London) A254 (1960) 66.
[18] M.E. Fisher, Philos. Mag. 7 (1962) 1731.