(+)-trachyspic acid using the methodology described herein is
underway in our laboratories and will be reported in due course.
Acknowledgements
We thank Dr Hideyuki Shiozawa (Sankyo Co., Ltd.) for copies
of the NMR spectra of natural trachyspic acid (1) and trachyspic
acid trimethyl ester (18). This work was funded by the Australian
Research Council-Discovery Projects Grants Scheme.
Notes and references
˚
† X-Ray data for 3: C20H32O8 M = 400.46, T = 295 K, k = 0.71069 A,
monoclinic, space group P21, a = 11.267(1), b = 19.608(2), c =
◦
3
˚
˚
12.035(1) A, b = 117.463 , V = 2359.2(3) A , Z = 4, Dc = 1.127
Mg m−3, l(Mo-Ka) 0.086 mm−1, F(000) 864, crystal size 0.5 × 0.25,
0.05 mm. 12556 reflections measured, 6113 independent (Rint 0.629)
the final wR (F2 all data) was 0.0979 and final R was 0.0457 for 3200
data with [I > 2r(I)]. Flack parameter = 0.0(10). CCDC reference
number 268561. See http://www.rsc.org/suppdata/ob/b5/b504258e
for crystallographic data in cif format.
Scheme 2 Reagents and conditions: (a) NaOMe, nonyl bromide, MeOH,
reflux; (b) LiAlH4, 0 ◦C; (c) (i) NaH, TBDPSCl; (ii) Dess Martin reagent;
(iii) PPh3, CBr4, 0 ◦C; (iv) BuLi, −78 ◦C; (d) B-Br-9-BBN, AcOH, 0 ◦C;
(e) (i) TBAF; (ii) Dess Martin reagent; (iii) p-TsOH, HOCH2CH2OH,
benzene, reflux.
‡ Data for synthetic (−)-1: [a]2D1 −3.5 (c 0.213, MeOH); [a]2D3 −8.4 (c
0.350, CH2Cl2); Lit.1 [a]D21 +3.1 (c 1.0, MeOH); mmax (thin film) 3425,
2927, 2856, 1724, 1611, 1370, 1139, 1000 cm−1; dH (400 MHz, DMSO-
d6) 0.84 (t, J = 6.6 Hz, 3H), 1.23 (br s, 12H), 1.39 (m, 2H), 2.02 (t,
J = 7.8 Hz, 1H), 2.36 (m, 2H), 2.67 (d, J = 16.8 Hz, 1H), 2.85 (d, J =
16.8 Hz, 1H), 3.56 (dd, J = 7.8, 11.8 Hz, 1H), 8.45 (s, 1H); dC (100 MHz,
DMSO-d6) 14.0, 20.5, 22.1, 27.5, 28.6, 28.7, 28.9, 31.3, 37.6, 38.7, 48.4,
86.5, 108.1, 116.7, 170.1, 170.6, 171.3, 174.5, 198.2 HRMS (ESI): Calcd
for C20H28O9H [M + H]+ 413.1812, found 413.1809.
§ Data for triester 18: [a]D23 −20.4 (c 0.130, CH2Cl2); mmax (thin film) 2926,
2854, 1742, 1612, 1367, 1135, 1007 cm−1; dH (400 MHz, DMSO-d6) 0.84
(t, J = 6.8 Hz, 3H), 1.23 (br s, 12H), 1.38 (m, 2H), 2.02 (t, J = 7.6 Hz,
1H), 2.39 (dd, J = 12.8, 13.2 Hz, 1H), 2.47 (dd, J = 7.2, 13.2 Hz, 1H),
2.87 (d, J = 16.8 Hz, 1H), 2.93 (d, J = 16.8 Hz, 1H), 3.55 (s, 3H), 3.64
(s, 3H), 3.70 (s, 3H), 3.80 (dd, J = 7.6, 12.6 Hz, 1H), 8.47 (s, 1H); dC
(100 MHz, DMSO-d6) 14.0, 20.5, 22.2, 27.5, 28.7, 28.8, 29.0, 31.4, 37.3,
38.5, 47.7, 51.9, 52.6, 53.0, 86.5, 107.7, 117.0, 169.1, 169.5, 169.8, 174.7,
197.7 HRMS (ESI): Calcd for C23H34O9Na [M + Na]+ 477.2101, found
477.2093.
Scheme 3 Reagents and conditions: (a) t-BuLi, Et2O–hexane, −78 ◦C
then lactone 3; (b) 3M HClO4, THF; (c) (i) Ac2O, DMAP, pyridine;
(ii) O3, NaHCO3, DMS; (d) TFA, CH2Cl2; (e) CH2N2, Et2O.
1 H. Shiozawa, M. Takahashi, T. Takatsu, T. Kinishita, K. Tanzawa,
T. Hosoya, K. Furuya, S. Takahashi, K. Furihata and H. Seto,
J. Antibiot., 1995, 48, 357.
2 K. Hirai, H. Ooi, T. Esumi, Y. Iwabuchi and S. Hatakeyama, Org.
Lett., 2003, 5, 857.
3 Compound 5 was synthesised from D-deoxyribose in an analogous
fashion to that described for the corresponding benzyl compound see:
R. M. Giuliano and F. J. Villani, Jr., J. Org. Chem., 1995, 60, 202; T.
Suami, K. I. Tadano, Y. Iimura and H. Yokoo, J. Carbohydr. Chem.,
1986, 5, 1.
provide the acetal 2 as a mixture of isomers at the anomeric
centre. Acid induced deprotection of the dioxolane resulted in
concomitant spirocyclisation which upon acetylation and subse-
quent ozonolysis–elimination2 provided spiroacetal 17 as a ∼4 : 1
mixture of spiroisomers favouring the desired compound 17.
TFA induced deprotection then gave (−)-(3R,4R,6R)-trachyspic
acid (1) which was identical to natural 1 in all respects except
for the sign of optical rotation.‡ Synthetic 1 was also further
characterised by conversion into the known trimethyl ester
derivative 18.§ This confirms that natural (+)-trachyspic acid
has the absolute configuration opposite to that shown in Fig. 1,
namely 3S,4S,6S.
4 M. Zhao, J. Li, E. Mano, Z. Song, D. M. Tschaen, E. J. J. Grabowski
and P. J. Reider, J. Org. Chem., 1999, 64, 2564.
5 R. Di Florio and M. A. Rizzacasa, J. Org. Chem., 1998, 63, 8595; A. N.
Cuzzupe, R. Di Florio and M. A. Rizzacasa, J. Org. Chem., 2002, 67,
4392; A. N. Cuzzupe, R. Di Florio, J. M. White and M. A. Rizzacasa,
Org. Biomol. Chem., 2003, 1, 3572.
6 L. J. Mathias, Synthesis, 1979, 561.
7 E. J. Corey and P. L. Fuchs, Tetrahedron Lett., 1972, 3769.
8 H. Shoji, D. Hedetaka, T. Satoru and S. Akira, Tetrahedron Lett.,
1983, 731.
In conclusion, we have achieved an enantiospecific synthesis
of the unnatural enantiomer of trachyspic acid, confirming the
absolute configuration of this compound. A synthesis of natural
9 W. F. Bailey and E. R. Punzalan, J. Org. Chem., 1990, 55, 5404.
2 0 7 4
O r g . B i o m o l . C h e m . , 2 0 0 5 , 3 , 2 0 7 3 – 2 0 7 4