4850
M. Barberis et al. / Tetrahedron Letters 46 (2005) 4847–4850
H. J. Am. Chem. Soc. 2002, 124, 14848; (c) Gurjar, M. K.;
Reddy, D. S. Tetrahedron Lett. 2002, 43, 295; (d)
Cachoux, F.; Ibrahim-Ouali, M.; Santelle, M. Syn. Lett.
2002, 12, 1987; (e) Hunt, J. C. A.; Laurent, P.; Moody, C.
J. J. Chem. Soc., Perkin Trans. 1 2002, 2378; (f) Frederik-
sen, S. M.; Grue-Sorensen, G. J. Labelled Compd.
Radiopharm. 2003, 46, 773.
new 4,4-disubstituted azepines as novel heterocyclic
products. Substitution was achieved employing the
methodology described by our research group; the next
step involves a one-pot Wittig/N-allylation process fol-
lowed by ring closing metathesis reaction, affording a
concise and easy approach to the synthesis of 4,4-disub-
stituted azepine derivatives.
8. (a) Ezquerra, J.; Pedregal, C.; Rubio, A.; Escribano, A.;
´
Sanchez-Ferrando, F. Tetrahedron 1993, 49, 8665; (b)
Ezquerra, J.; Pedregal, C.; Rubio, A.; Vaquero, J. J.;
Acknowledgements
´
Matıa, M. P.; Martın, J.; Dıaz, A.; Garcıa-Navıo, J. L.;
Deeter, J. B. J. Org. Chem. 1994, 59, 4327.
´
´
´
´
We wish to thank Dr. Jesu´s Ezquerra, Dr. Ulf Tilstam,
Dr. Ioannis Houpis for their encouragement, Dr. Susa-
9. (a) Katagiri, N.; Muto, M.; Nomura, M.; Higashikawa,
T.; Kaneko, C. Chem. Pharm. Bull. 1991, 39, 1112; (b)
Bon, E.; Bigg, D. C. H.; Bertrand, G. J. Org. Chem. 1994,
59, 1904; (c) Luker, T.; Hiemstra, H.; Speckamp, W. N.
Tetrahedron Lett. 1996, 37, 8257.
´
´
na Marıa Garcıa-Cerrada for her assistance, and we also
thank Dr. Carmen Somoza, Dr. Luis Casarrubios and
Dr. Ivan Collado for helpful discussions.
10. Padwa, A.; Kissell, W. S.; Eidell, C. K. Can. J. Chem.
2001, 79, 1981.
References and notes
11. Shaughnessy, B.; Hamann, B. C.; Hartwig, J. F. J. Org.
Chem. 1998, 63, 6546.
1. For leading references to the synthesis and structure of
natural products containing nitrogen heterocycles, see: (a)
The Alkaloids: Chemistry and Pharmacology; Brossi, A.,
Cordell, G. A., Eds.; Academic: New York, 1992; (b)
Alkaloids: Chemical and Biological Perspectives; Pelletier,
S. W., Ed.; Wiley-Interscience: New York, 1988; (c)
BelenÕKii, L. J. In Advances in Heterocyclic Chemistry;
Katritzky, A. R., Ed.; Academic: New York, 1988; Vol.
44, Chapter 4; (d) Comprehensive Heterocyclic Chemistry;
Meth-Cohn, O., Ed.; Pergamon: New York, 1984.
2. Comprehensive Heterocyclic Chemistry; Smalley, R. K.,
Ed.; Pergamon: New York, 1984.
3. For examples, see: (a) Fleming, I.; Woodward, R. B.
J. Chem. Soc., Perkin Trans. 1 1973, 1653; (b) Billett, E.
H.; Fleming, I.; Hanson, S. W. J. Chem. Soc., Perkin
Trans. 1 1973, 1661; (c) Tamura, Y.; Kita, Y.; Terashima,
M. Chem. Pharm. Bull. 1971, 529.
12. (a) Shishido, K.; Sukegawa, Y.; Fukumoto, K. J. Chem.
Soc., Perkin Trans. 1 1987, 993; (b) Takasuka, M.;
Yamakawa, M.; Ohtani, M. J. Med. Chem. 1991, 34,
1885; (c) Shishido, K.; Sukegawa, Y.; Fukumoto, K.;
Kametani, T. Heterocycles 1986, 24, 641; (d) Ihara, M.;
Kirihara, T.; Kawaguchi, A.; Tsutura, M.; Keiichiro, F.;
Kametani, T. J. Chem. Soc., Perkin Trans. 1 1987, 1719.
13. For the synthesis of N-allyl-N-(3,3-dimethylpent-4-enyl)-
4-methylbenzenesulfonamide 8c: A mixture of ButOK
(11.7 mmol, 4.19 g) and PPh3PMeBr (11.74 mmol, 1.32 g)
in THF (80 mL) was stirred at rt for 20 min. Compound
6c (3.74 mmol, 1.0 g) in THF (15 mL) was added dropwise
and the reaction mixture was stirred at rt for 1 h.
Afterwards, allyl bromide (11.22 mmol, 1.8 mL) was
added and stirred for 30 min. EtOAc was added, washed
with brine and dried over Na2SO4. It was concentrated
under reduced pressure and the brown oil was purified by
flash chromatography (silica gel, ethyl acetate–hexane
5:95). Compound 8c (741 mg, 65% yield) was isolated as
colourless oil. 1H NMR (300 MHz, CDCl3) d 0.95 (s, 6H),
1.60–1.49 (m, 2H), 2.41 (s, 3H), 3.06–3.00 (m, 2H), 3.77
(m, 2H), 4.93–4.85 (m, 2H), 5.19–5.11 (m, 2H), 5.72–5.59
(m, 2H), 7.29 (d, J = 7.7 Hz, 2H), 7.67 (d, J = 7.7 Hz, 2H).
14. For the synthesis of 4,4-dimethyl-1-tosyl-2,3,4,7-tetrahy-
dro-1H-azepine 1c: GrubbÕs catalyst (second generation,
4. Wu, M. H.; Jacobsen, E. N. Tetrahedron Lett. 1997, 38,
1693.
5. For reviews, see: (a) Grubss, R. H.; Chang, S. Tetrahedron
1998, 54, 4413; (b) Furstner, A. Angew. Chem., Int. Ed.
¨
2000, 39, 3012; (c) Connon, S. J.; Blechert, S. Angew.
Chem., Int. Ed. 2003, 42, 1900; (d) Schrock, R. R.;
Hoveyda, A. H. Angew. Chem., Int. Ed. 2003, 42, 4592; (e)
Giessert, A. J.; Diver, S. T. Chem. Rev. 2004, 104, 1317; (f)
Poulsen, C. S.; Madsen, R. Synthesis 2003, 1; (g) Mori, M.
In Handbook of Metathesis; Grubbs, R. H., Ed.; Wiley-
VCH: Weinheim, Germany, 2003; Vol. 2, pp 176–204; (h)
Deiters, A.; Martin, S. F. Chem. Rev. 2004, 104, 2199.
6. (a) Nguyen, S. T.; Grubbs, R. H.; Ziller, J. W. J. Am.
Chem. Soc. 1993, 115, 9858; (b) Schwab, P.; France, M. B.;
Ziller, J. W.; Grubbs, R. H. Angew. Chem., Int. Ed. Engl.
1995, 34, 2039.
10% mol, 41 mg) was added to
a solution of 8c
(0.650 mmol, 200 mg) in CH2Cl2 (110 mL) and refluxed
for 10 h. The solvent was removed under reduced pressure
and purified by flash chromatography (silica gel column,
ethyl acetate–hexane 5:95). Compound 1c (127 mg, 70%
yield) was isolated as white solid. 1H NMR (300 MHz,
CDCl3) d 1.02 (s, 6H), 1.68 (t, J = 6.4 Hz, 2H), 2.40 (s,
3H), 3.32 (t, J = 6.1 Hz), 3.74 (d, J = 4.4 Hz), 5.51–5.39
(m, 2H), 7.28 (d, J = 7.7 Hz, 2H), 7.64 (d, J = 7.7 Hz, 2H);
13C NMR (75 MHz, CDCl3) d 21.9, 29.6, 37.1, 38.7, 44.7,
45.4, 122.8, 127.6, 129.9, 135.8, 143.3, 143.5.
7. For examples, see: (a) Fuerstner, A.; Guth, O.; Dueffels,
A.; Seidel, G.; Liebl, M.; Gabor, B.; Mynott, R. Chem.
Eur. J. 2001, 7, 4811; (b) Wipf, P.; Rector, S.; Takahashi,