2090
B. H. Hirth et al. / Bioorg. Med. Chem. Lett. 15 (2005) 2087–2091
Table 3. Azine carboxylic acid modified Tic diamides
4. Kerem, B. S.; Rommens, J. M.; Buchanan, D.; Mark-
iewicz, T. K.; Cox, A.; Chakravarti, M.; Buchwald, M.;
Tsui, L. C. Science 1989, 245, 1073–1080.
5. Welsh, M. J.; Tsui, L.-C.; Boat, T. F.; Beaudet, A. L. In
The Metabolic and Molecular Basis of Inherited Disease;
Scriver, C. R., Beaudet, A. L., Sly, W. S., Valle, D., Eds.;
McGraw-Hill: New York, 1995; pp 3799–3876.
HN
*
N
O
O
6. Galietta, L. J. V.; Moran, O. Curr. Opin. Pharmacol. 2004,
4, 497–503.
X
Y
7. (a) Illek, B.; Fischer, H.; Santos, G. F.; Widdicombe, J.
H.; Machen, T. E.; Reenstra, W. W. Am. J. Physiol. 1995,
268, C886–C893; (b) Illek, B.; Lizarzaburu, M. E.; Lee, V.;
Nantz, M. H.; Kurth, M. J.; Fischer, H. Am. J. Physiol.
2000, 279, C1838–C1846.
2
Z
R
Compd
*R/S
R2
X/Y/Z
EC50
(nM)
MRa
(%)
47
48
49
50
51
52
53
S
S
S
S
S
S
S
OPh
O-i-Pr
N/CH/CH
N/CH/CH
N/CH/CH
N/CH/CH
CH/N/CH
CH/N/CH
CH/CH/N
20
6.0
9.4
79
35
16
11
85
74
83
55
71
55
51
8. (a) Haws, C. M.; Nepomuceno, I. B.; Krouse, M. E.;
Wakelee, H.; Law, T.; Xia, Y.; Nguyen, H.; Wine, J. J.
Am. J. Physiol. 1996, 270, C1544–C1555; (b) Chappe, V.;
Mettey, Y.; Vierfond, J. M.; Hanrahan, J. W.; Gola, M.;
Verrier, B.; Becq, F. Br. J. Pharmacol. 1998, 123, 683–
693.
9. Marivingt-Mounir, C.; Norez, C.; Derand, R.; Bulteau-
Pignoux, L.; Nguyen-Huy, D.; Viossat, B.; Morgant, G.;
Becq, F.; Vierfond, J.-M.; Mettey, Y. J. Med. Chem. 2004,
47, 962–972.
O-Cyclohexyl
Cl
O-Cyclohexyl
O-i-Pr
O-i-Pr
a Maximum response relative to cold temperature control (100%).
10. (a) Devor, D. C.; Bridges, R. J.; Pilewski, J. M. Am. J.
Physiol. 2000, 279, C461–C479; (b) Caci, E.; Folli, C.;
Zegarra-Moran, O.; Ma, T.; Springsteel, M. F.; Sammel-
son, R. E.; Nantz, M. H.; Kurth, M. J.; Verkman, A. S.;
Galietta, L. J. V. Am. J. Physiol. 2003, 285, L180–L188.
11. Sammelson, R. E.; Ma, T.; Galietta, L. J. V.; Verkman, A.
S.; Kurth, M. J. Bioorg. Med. Chem. Lett. 2003, 13, 2509–
2512.
the wild-type protein, which is also known to be fairly
inefficiently processed, with only an estimated 20–25%
of the immature protein reaching the cell surface.16
In summary, screening of our in-house compound li-
brary led to the discovery of a novel class of CFTR
modulators capable of stimulating chloride secretion,
Tic diamides. Subsequent analoging was carried out in
two stages: rapid array synthesis (unpurified analogs)
was used to quickly and broadly assess SAR around
the lead while a more focused, traditional medicinal
chemistry effort followed. By optimizing both the acid
and amine regions of the lead compound, we were able
to improve CFTR activity of the series more than 30-
fold.
12. Murine C127 cells expressing DF508 CFTR were grown in
microtiter plates under a 37 °C, 5% CO2 atmosphere
(DulbeccoÕs Modified Eagle Medium supplemented with
fetal bovine serum). After three days, the cultures were
switched to serum-free medium and treated overnight with
test compounds (final concentration, 12.5 lM) and
MQAE (10 mM). The cells were then washed with a
chloride-containing buffer to remove extracellular MQAE
and incubated to quench intracellular MQAE fluores-
cence. Chloride buffer was replaced with nitrate containing
buffer with added forskolin (10 lM) and isobutylmethyl-
xanthine (100 lM). The buffers were adjusted to pH 7.4
and contained (mM): HEPES (10), K2HPO4 (2.4),
KH2PO4 (0.6), CaSO4 (1.0), MgSO4 (1.0), NaCl (150),
or NaNO3 (150), glucose (25). CFTR chloride transport
was determined by measuring the rate of increase in
MQAE fluorescence over the first five minutes (excitation
360 nM, emission 460 nM). False positives (i.e., com-
pounds which induce non-specific chloride leakage) were
identified by measuring chloride flux in cells treated with
nitrate containing buffer without added forskolin and
isobutylmethylxanthine.
Acknowledgements
This work was supported by a grant from the Cystic
Fibrosis Foundation.
References and notes
13. Denning, G. M.; Anderson, M. P.; Amara, J. F.; Marshall,
J.; Smith, A. E.; Welsh, M. J. Nature London 1992, 358,
761–764.
(accessed December 20, 2004).
2. Pilewski, J. M.; Frizzell, R. A. Physiol. Rev. 1999, 79,
S215–S255.
14. The racemic intermediates 2 and 3 were prepared from
commercially available N-(tert-butoxycarbonyl)-Tic and
Tic methyl ester, respectively. EDC amidation of the
former starting material with 4-chloroaniline followed by
trifluoroacetic acid mediated amine deprotection afforded
2. Amidation of the latter starting material with 3-
phenoxybenzoic acid followed by hydrolysis of the ester
furnished 3. F or2: 1H NMR (CDCl3) d 9.42 (s, 1H), 7.65–
7.53 (m, 2H), 7.36–7.04 (m, 6H), 4.12–3.97 (m, 2H), 3.68
(dd, J = 10.4, 5.4 Hz, 1H), 3.35 (dd, J = 16.3, 5.4 Hz, 1H),
2.90 (dd, J = 16.3, 10.4 Hz, 1H) ppm. For 3 (6:4 mixture of
3. (a) Riordan, J. R.; Rommens, J. M.; Kerem, B.-S.; Alon,
N.; Rozmahel, R.; Grzelczak, Z.; Zielenski, J.; Lok, S.;
Plavsic, N.; Chou, J.-L.; Drumm, L.; Iannuzzi, M. C.;
Collins, F. S.; Tsui, L.-C. Science 1989, 245, 1066–1072;
(b) Crawford, I.; Maloney, P. C.; Zeitlin, P. L.; Guggino,
W. B.; Hyde, S. C.; Turley, H.; Gatter, K. C.; Harris, A.;
Higgins, C. F. Proc. Natl. Acad. Sci. U.S.A. 1991, 88,
9262–9266; (c) Denning, G. M.; Ostedgaard, L. S.; Cheng,
S. H.; Smith, A. E.; Welsh, M. J. J. Clin. Invest. 1992, 89,
339–349.
1
rotamers): H NMR (CDCl3) d 7.44–6.78 (m, 13H), 5.29