Scheme 2
The strategy for the synthesis of welwitindolinones is
promoted reaction of a ketone-TMS-enol ether with tertiary
or benzylic alkyl halides.7 For the problem at hand, it was
more desirable to use the readily synthesized tertiary alcohol
(10) directly. When the coupling of cyclohexanone-TMS-
enol ether and tertiary alcohol 10′, lacking the bromine at
the 4-position of the indole, was carried out under Natsume’s
conditions, using SnCl4 as the Lewis acid,7d,e the desired
alkylation product (11′) was obtained in >80% yield. Unfor-
tunately, under the same conditions, the corresponding halo-
genated indole (10) afforded the alkylated product (11) in
only 66% yield. On the other hand, when the reaction was
performed with TiCl4 in toluene, the yield increased to 76%.
shown in Scheme 1. The key step in the plan involves
assembly of the challenging bridged-bicyclic ring system
through an intramolecular Pd-catalyzed enolate arylation
reaction (4 f 3).6 Although several reports describe the
construction of the seven-membered ring of 1 by formation
of the C4-C11 bond,4c,e-g no one to date has successfully
constructed the bicyclo[4.3.1]decane ring skeleton through
this means. Our plan was to use a â-keto ester in the
cyclization event to allow the arylation reaction to proceed
under mild conditions.5 Importantly, the bridgehead methyl
ester in the resulting product would serve as a masked
form of the required isothiocyanate. The latter function-
ality could be revealed when needed via a Curtius rearrange-
ment (3 f 2). Finally, enolate arylation precursor 4
would be prepared convergently, through the alkylative
coupling of the indole subunit (6) to the cyclohexanone
unit (5).
To test the strategy toward welwitindolinones, we first set
out to create the cyclization precursor 14 (Scheme 2).
Commercially available 4-bromoindole (7) was acylated
under Friedel-Crafts conditions to afford ketone 8 (95%).
Subsequent tosylation gave protected indole 9 in quantitative
yield, which was then treated with MeMgBr, affording
tertiary alcohol 10 in 84% yield.
Although the natural product (1) contains an N-methyl
indole, the N-tosyl-protected indole was used for the alkyl-
ation reaction to minimize reaction at the indole 2-position.
Deprotection of the tosyl group proceeded uneventfully with
potassium hydroxide in ethanol and afforded the free indole
12 in quantitative yield. Methylation under phase transfer
conditions then gave 13, containing the requisite N-methyl
group. Finally, treatment of 13 with LDA generated the
kinetic lithium enolate, which was carboxylated using the
Mander reagent8 to afford 14 in 96% yield.9
(6) For examples of intramolecular Pd-catalyzed enolate arylations, see:
(a) Ciufolini, M. A.; Qi, H. B.; Browne, M. E. J. Org. Chem. 1988, 53,
4149. (b) Muratake, H.; Hayakawa, A.; Natsume, M. Tetrahedron Lett. 1997,
38, 7577. (c) Muratake, H.; Natsume, M. Tetrahedron Lett. 1997, 38, 7581.
(d) Muratake, H.; Nakai, H. Tetrahedron Lett. 1999, 40, 2355. (e) Muratake,
H.; Natsume, M.; Nakai, H. Tetrahedron 2004, 60, 11783. (f) Shaughnessy,
K. H.; Hamann, B. C.; Hartwig, J. F. J. Org. Chem. 1998, 63, 6546.
(g) Lee, S.; Hartwig, J. F. J. Org. Chem. 2001, 66, 3402. (h) Honda, T.;
Namiki, H.; Satoh, F. Org. Lett. 2001, 3, 631. (i) Gaertzen, O.; Buchwald,
S. L. J. Org. Chem. 2002, 67, 465. (j) Zhang, T. Y.; Zhang, H. B.
Tetrahedron Lett. 2002, 43, 1363. For examples of intramolecular Pd-
catalyzed vinylations, see: (k) Piers, E.; Marais, P. C. J. Org. Chem. 1990,
55, 3454. (l) Piers, E.; Renaud, J. J. Org. Chem. 1993, 58, 11. (m) Sole´,
D.; Peidro, E.; Bonjoch, J. Org. Lett. 2000, 2, 2225. (n) Yu, J. M.; Wang,
T.; Liu, X. X.; Deschamps, J.; Flippen-Anderson, J.; Liao, X. B.; Cook, J.
M. J. Org. Chem. 2003, 68, 7565. For an example from our lab of a Pd-
catalyzed phenolate arylation, see: (o) Hennings, D. D.; Iwasa, S.; Rawal,
V. H. J. Org. Chem. 1997, 62, 2.
The next task was to introduce the cyclohexanone unit at
the benzylic position of 10. Such couplings are typically
carried out by an SN1-type process through the Lewis acid-
(3) For a review on studies toward 1 and related structures, see:
Avendan˜o, C.; Mene´ndez, J. C. Curr. Org. Synth. 2004, 1, 65.
(4) (a) Konopelski, J. P.; Deng, H. B.; Schiemann, K.; Keane, J. M.;
Olmstead, M. M. Synlett 1998, 1105. (b) Deng, H.; Konopelski, J. P. Org.
Lett. 2001, 3, 3001. (c) Wood, J. L.; Holubec, A. A.; Stoltz, B. M.; Weiss,
M. M.; Dixon, J. A.; Doan, B. D.; Shamji, M. F.; Chen, J. M.; Heffron, T.
P. J. Am. Chem. Soc. 1999, 121, 6326. (d) Ready, J. M.; Reisman, S. E.;
Hirata, M.; Weiss, M. M.; Tamaki, K.; Ovaska, T. V.; Wood, J. L. Angew.
Chem., Int. Ed. 2004, 43, 1270. (e) Kaoudi, T.; Quiclet-Sire, B.; Seguin,
S.; Zard, S. Z. Angew. Chem., Int. Ed. 2000, 39, 731. (f) Jung, M. E.;
Slowinski, F. Tetrahedron Lett. 2001, 42, 6835. (g) Lo´pez-Alvarado, P.;
Garc´ıa-Granda, S.; AÄ lvarez-Ru´a, C.; Avendan˜o, C. Eur. J. Org. Chem. 2002,
1702.
(7) (a) Chan, T. H.; Paterson, I.; Pinsonnault, J. Tetrahedron Lett. 1977,
18, 4183. (b) Reetz, M. T.; Maier, W. F. Angew. Chem. 1978, 90, 50.
(c) Reetz, M. T.; Schwellnus, K. Tetrahedron Lett. 1978, 19, 1455.
(d) Muratake, H.; Natsume, M. Tetrahedron 1990, 46, 6331. (e) Sakagami,
M.; Muratake, H.; Natsume, M. Chem. Pharm. Bull. 1994, 42, 1393.
(8) Mander, L. N.; Sethi, S. P. Tetrahedron Lett. 1983, 24, 5425.
(5) For recent reviews on Pd-catalyzed enolate arylation, see: (a) Lloyd-
Jones, G. C. Angew. Chem., Int. Ed. 2002, 41, 953. (b) Miura, M.; Nomura,
M. Top. Curr. Chem. 2002, 219, 211. (c) Culkin, D. A.; Hartwig, J. F. Acc.
Chem. Res. 2003, 36, 234.
3422
Org. Lett., Vol. 7, No. 16, 2005