complex of [Rh(acac)(C2H4)]2 with (R)-BINAP under the
standard conditions used for rhodium-catalyzed 1,4-addition
of arylboronic acids to nitroalkenes.4 We were delighted to
observe that the reaction gave the desired product 2a, the
structure of which was confirmed by X-ray diffraction
(Figure 1),9 with high enantioselectivity of 94% ee (entry
Despite the success in the rhodium-catalyzed 1,4-addition
of nitrocylcohexene with arylboronic acids,4 so far it is not
clear if the reaction of a 2-nitrocyclohex-2-enol ester such
as 1a with an arylboronic acid in the presence of a chiral
rhodium complex can undergo the 1,4-addition of phenyl-
boronic acid and then â-elimination of an ester group via an
assumed intermediate 76 to regenerate the catalyst and
liberate compound 2a (eq 2). To address this question, we
describe here the first asymmetric nitroallylation of arylbo-
ronic acids with nitroallyl acetate 1a and its structural
analogues in the presence of chiral rhodium complexes to
generate chiral nitroalkenes 2 with high enantioselectivities.
The utility of this method is also demonstrated in a concise
asymmetric total synthesis of optically pure (+)-γ-lycorane.7,8
Figure 1. X-ray structure of 2a.
1). The absolute configuration of the stereogenic center was
determined to be R by correlation with a known compound
(see the Supporting Information). However, the product was
only isolated in 30% yield because the starting substrate 1a
decomposed at 100 °C. Thus, optimization of the reaction
conditions is required (Table 1). The use of pivalic acid
We first reacted acetic acid 2-nitrocyclohex-2-enyl ester
(1a) with phenylboronic acid, catalyzed by a rhodium
Table 1. Rhodium-Catalyzed Asymmetric Nitroallylation of
2-Nitrocyclohex-2-enol Esters 1 with Phenylboronic Acida
(3) (a) Seebach, D.; Missbach, M.; Calderari, G.; Eberle, M. J. Am. Chem.
Soc. 1990, 112, 7625. (b) Denmark, S. E.; Kramps, L. A.; Montgomery, J.
I. Angew. Chem., Int. Ed. 2002, 41, 4122. (c) Denmark, S. E.; Montgomery,
J. I. Angew. Chem., Int. Ed. 2005, 44, 3732.
(4) Hayashi, T.; Senda, T.; Ogasawara, M. J. Am. Chem. Soc. 2000, 122,
10716.
(5) For asymmetric 1,4-addition of arylboronic acids with electron-
deficient olefins, see a recent review: Hayashi, T.; Yamasaki, K. Chem.
ReV. 2003, 103, 2829.
(6) A â-oxygen elimination was proposed as a key step for the
asymmetric ring-opening reaction of oxanorbornene derivatives with
arylboronic acids catalyzed by chiral rodium complexes, see the leading
references: (a) Lautens, M.; Dockendorff, C.; Fagnou, K.; Malicki, A. Org.
Lett. 2002, 4, 1311. (b) Lautens, M.; Fagnou, K.; Hiebert, S. Acc. Chem.
Res. 2003, 36, 48. (c) Marakami, M.; Igawa, H. Chem. Commun. 2002,
390.
entry
metal
1
T (°C) time (h) yieldb (%) eec (%)
1
2
3
4
5
6
7
Rh(acac)(C2H4)2 1a 100
Rh(acac)(C2H4)2 1b 100
Rh(acac)(C2H4)2 1c 100
5
5
5
30
30
48
20
41
55
56
94
95
93
94
94
97
97d
[RhCl(COD)]2
1a 100
5
Rh(acac)(C2H4)2 1a
[Rh(OH)(COD)]2 1a
[Rh(OH)(COD)]2 1a
50
50
50
20
20
20
(7) For total syntheses of racemic γ-lycorane, see: (a) Ueda, N.;
Tokuyama, T.; Sakan, T. Bull. Chem. Soc. Jpn. 1966, 39, 2012. (b) Irie,
H.; Nishitani, Y.; Sugita, M.; Uyeo, S. J. Chem. Soc., Chem. Commun.
1970, 1313. (c) Tanaka, H.; Nagai, Y.; Irie, H.; Uyeo, S.; Kuno, A. J. Chem.
Soc., Perkin Trans. 1 1979, 874. (d) Genem, B. Tetrahedron Lett. 1971,
12, 4105. (e) Hara, H.; Hoshino, O.; Umezawa, B. Tetrahedron Lett. 1972,
13, 5031. (f) Umezawa, B.; Hoshino, O.; Sawaki, S.; Sato, S.; Numao, N.
J. Org. Chem. 1977, 42, 4272. (g) Iida, H.; Yuasa, Y.; Kibayashi, C. J.
Am. Chem. Soc. 1978, 100, 3598. (h) Iida, H.; Yuasa, Y.; Kibayashi, C. J.
Org. Chem. 1979, 44, 1074. (i) Higashiyama, H.; Honda, T.; Otomasu, H.;
Kametani T. Planta Med. 1983, 48, 268. (j) Sugiyama, N.; Narimiya, M.;
Iida, H.; Kibuchi, T. J. Heterocycl. Chem. 1988, 25, 1455. (k) Ba¨ckvall, J.
E.; Andersson, P. G.; Stone, G. B.; Gogoll, A. J. Org. Chem. 1991, 56,
2988. (l) Pearson W. H.; Sckeryantz, J. M. J. Org. Chem. 1992, 57, 6783.
(m) Grotjahn, D. B.; Vollhardt, P. C. Synthesis 1993, 579. (n) Banwell, M.
G.; Wu, A. W. J. Chem. Soc., Perkin Trans. 1 1994, 2671. (o) Angle, S.
R.; Boyce, J. P. Tetrahedron Lett. 1995, 36, 6185. (p) Ikeda, M.; Ohtani,
S.; Sato, T.; Ishibashi, H. Synthesis 1998, 1803. (q) Huang-Cong, X.;
Quiclet-Sire, B.; Zard, S. Z. Tetrahedron Lett. 1999, 40, 2125. (r) Padwa,
A.; Brodney, M. A.; Lynch, S. M. J. Org. Chem. 2001, 66, 1716. (s) Tamura,
O.; Matsukida, H.; Toyao, A.; Takeda, Y.; Ishibashi, H. J. Org. Chem.
2002, 67, 5537. (t) Shao, Z.; Chen, J.; Huang, R.; Wang, C.; Li, L.; Zhang,
H. Synlett 2003, 2228. (u) Yasuhara, T.; Osafune, E.; Nishimura, K.;
Yamashita, M.; Yamada, K.-i.; Muraoka, O.; Tomioka, K. Tetrahedron Lett.
2004, 45, 3043. (v) Gao, S.; Tu, Y. Q.; Song, Z.; Wang, A.; Fan, X.; Jiang,
Y. J. Org. Chem. 2005, 70, 6523.
a The reaction of arylboronic acid was performed in the presence of 5
mol % of rhodium complex and 6 mol % of (R)-BINAP in a solvent mixture
of dioxane/H2O ) 10/1. b Isolated yield. c The ee values were determined
by GC. d The ligand is (S)-BIANP.
2-nitro-cyclohex-2-enyl ester 1b to replace 1a as a substrate
did not suppress the decomposition, and a low yield was
(8) For total syntheses of optically active (+)-γ-lycorane, see: (a)
Yoshizaki, H.; Satoh, H.; Sato, Y.; Nukui, S.; Shibasaki, M.; Mori, M. J.
Org. Chem. 1995, 60, 2016. (b) Cossy, J.; Tresnard, L.; Pard, D. G. Eur.
J. Org. Chem. 1999, 1925. (c) Banwell, M. G.; Harvey, J. E.; Hockless, D.
C. J. Org. Chem. 2000, 65, 4241.
(9) Crystal data of 2a: C12H13NO2, MW) 203.23, orthorhombic, space
group P212121, a ) 6.1206(5) Å, b ) 12.592(1) Å, c ) 14.007(1) Å, R )
90°, â ) 90°, γ ) 90°, U ) 1079.57(12) Å3, T ) 290(2) K, Z ) 4, Dc )
1.250 mg/m3, µ ) 0.085 mm-1, λ ) 0.71073 Å, F(000) 432, crystal size:
0.56 × 0.50 × 0.42 mm3, 1483 reflections collected, 1380 [R(int) ) 0.0122];
refinement method: full-matrix least-squares on F 2; goodness-of-fit on F 2
) 0.961, final R indices [I > 2σ(I)] R1 ) 0.0327, wR2 ) 0.0652.
4286
Org. Lett., Vol. 7, No. 19, 2005