4
Tetrahedron
efficiency, minimal use of organic solvents, recyclability, and
Am. Chem. Soc. 2009
,
131, 886. (c) Nepal, B.; Scheiner, S.
scalability of this method highlights its potential application in
large-scale 1,2,4-triazole manufacturing.
J. Phys. Chem. 2015
, 119, 13064.
5
Available methods for the synthesis of 1,2,4-triazoles: (a)
Chen, Z.; Li, H.; Dong, W.; Miao, M.; Ren, H. Org. Lett.
2016, 18, 1334. (b) Zhang, Q.; Keenan, S. M.; Peng, Y.; Nair,
A. C.; Yu, S. J.; Howells, R. D.; Welsh, W. J. J. Med. Chem.
2006, 49, 4044. (c) Stocks, M. J.; Cheshire, D. R.; Reynolds,
R. Org. Lett. 2004, 6, 2969. (d) Li, Z. H.; Wong, M. S.;
Fukutani, H.; Tao, Y. Org. Lett. 2006, 8, 4271. (e) Buzykin,
B. I.; Bredikhina, Z. A. Synthesis 1993, 59. (f) Paulvannan,
K.; Hale, R.; Sedehi, D.; Chen, T. Tetrahedron 2001, 57,
9677. (g) Komzak, A. A.; Polya, J. B. J. App. Chem. 1952, 2,
668. (h) Atkinson, M. R.; Poyla, J. B. J. Chem. Soc. 1952,
3418.
In summary, we have developed a highly efficient alumina-
promoted synthesis of substituted
N-aryl-1,2,4-triazoles
from hydrazines and easily accessible imides. The mild
reaction conditions allow for this method to tolerate a large
array of functional groups with diverse electronic and steric
properties. Additionally, all of the reaction products were
isolated without the need of complicated purifications. In the
case of unsymmetrical imides the reaction preceded with
complete regioselectivity. The proposed mechanism
logically validates the dramatic effect observed with
alumina. The reaction can be efficiently scaled-up and the
promoter can be reused without affecting the reaction yield.
Future efforts will focus on further understanding this
reaction for the construction of more structurally diverse
triazoles and other nitrogen-containing heterocycles.
6
(a) Huang, H.; Guo, W.; Wu, W.; Li, C.-J.; Jiang, H. Org.
Lett. 2015, 17, 2894. (b) Bechara, W. S.; Khazhieva, I. S.;
Rodriguez, E.; Charette, A. B. Org. Lett. 2015, 17, 1184. (c)
Castanedo, G. M.; Seng, P. S.; Blaquiere, N.; Trapp, S.;
Staben, S. T. J. Org. Chem. 2011, 76, 1177. (d) Sudheendran,
K.; Schmidt, D.; Frey, W.; Conrad, J.; Beifuss, U.
Tetrahedron 2014, 70, 1635. (e) Guru, M. M.;
Punniyamurthy, T. J. Org. Chem. 2012, 77, 5063. (f) Staben,
S. T.; Blaquiere, N. Angew. Chem., Int. Ed. 2010, 49, 325.
Ueda, S.; Nagasawa, H. J. Am. Chem. Soc. 2009, 131, 15080.
Xu, H.; Ma, S.; Xu, Y.; Bian, L.; Ding, T.; Fang, X.; Zhang,
W.; Ren, Y. J. Org. Chem. 2015, 80, 1789.
Acknowledgements
The donors of the American Chemical Society Petroleum
Research Fund financially supported these research efforts. We
are also thankful to Dr. John F. Eng at Princeton University for
his help with HRMS analysis.
7
8
Notes and references
§ Department of Chemistry and Biochemistry, Rowan University,
201 Mullica Hill Rd, Glassboro, New Jersey, USA. E-mail:
9
(a) Beebe, A. W.; Dohmeier, E. F.; Moura-Letts, G. Chem.
Commun. 2015, 51, 13511. (b) Neuhaus, W. C.; Bakanas, I.
J.; Lizza, J. R.; Boon, Jr. C.; Moura-Letts, G. Green Chem.
Lett. & Rev. 2016, 9, 39. (c) Quinn, D. J.; Haun, G. J. Moura-
Letts, G. Tetrahedron Lett. 2016, 57, 3844
Electronic Supplementary Information (ESI) available:
[Experimental protocols and spectroscopic data for each
triazole are provided].
10 (a) Wang, L.; Fu, H.; Jiang, Y.; Zhao, Y. Chem. Eur. J. 2008,
14, 10722. (b) Aruri, H.; Singh, U.; Kumar, S.; Kushwaha,
M.; Gupta, A. P.; Vishwakarma, R. A.; Singh, P. P. Org. Lett.
2016, ASAP. (c) Nasr-Esfahani, M.; Montazerozohori, M.;
Filvan, N.; J. Serb. Chem. Soc. 2012, 77, 415.
1
(a) Al-Masoudi, I. A.; Al-Soud, Y A.; Al-Salihi, N. J.; Al-
Masoudi, N. A. Chemistry of Heterocyclic Compounds, 2006,
42, 1377. (b) Moulin, A.; Bibian, M.; Blayo, A.-L.; El
Habnouni, S.; Martinez, J.; Fehrentz, J.-A. Chem. Rev. 2010,
110, 1809. (c) Naito, Y.; Akahoshi, F.; Takeda, S.; Okada, T.;
Kajii, M.; Nishimura, H.; Sugiura, M.; Fukaya, C.; Kagitani,
Y. J. Med. Chem. 1996, 39, 3019. (d) Tozkoparan, B.;
Gokhan, N.; Aktay, G.; Yesilada, E.; Ertan, M. Eur. J. Med.
Chem. 2000, 35, 743.
11 (a) Lee, J.; Hong, M.; Jung, Y.; Cho, E. J.; Rhee, H.
Tetrahedron 2012, 68, 2045. (b) Inturi, S. B.; Kalita, B.;
Ahamed, A. J. Tet. Lett. 2016, 57, 2227.
12 Costantini, N. V.; Bates, A. D.; Haun, G. J.; Chang, N. M.;
Moura-Letts, G. ACS Sust. Chem. Eng. 2016, 4, 1906.
13 Metal oxides that proved to be unsuccessful: MgO, ZnO,
CaO, ZrO2.
2
3
(a) Battaglia, U.; Moody, C. J. J. Nat. Prod. 2010, 73, 1938.
(b) Haycock-Lewandowski, S. J.; Wilder, A.; Ahman, J. Org.
Process Res. Dev. 2008, 12, 1094. (b) Turner, K. Org.
Process Res. Dev. 2012, 16, 727.
14 Paulvannan, K.; Chen, T.; Hale, R. Tetrahedron 2000, 56,
8071.
15 (a) Pendyala, V. R.; Shafer, W. D. Catal. Lett. 2014, 144,
1088. (b) Posner, G. H.; Gurria, G. M.; Babiak, K. A. J. Org.
Chem. 1977, 42, 3173.
(a) Kaku, Y.; Tsuruoka, A.; Kakinuma, H.; Tsukada, I.;
Yanagisawa, M.; Naito, T. Chem. Pharm. Bull. 1998, 46,
1125. (b) Koltin, Y.; Hitchcock, C. A. Curr. Opin. Chem.
Biol. 1997, 1, 176. (c) Abdo, N. Y. M.; Kamel, M. M. Chem.
Pharm. Bull. 2015, 63, 369. (d) Tang, R.; Jin, L.; Mou, C.;
Yin, J.; Bai, S.; Hu, D.; Wu, J.; Yang, S.; Song, B. Chem.
Cen. J. 2013, 7, 30. (e) papadopoulou, M. V.; Bloomer, W.
D.; Rosenzweig, H. S.; Ashworth, R.; Wilkinson, S. R.;
Kaiser, M.; Andriani, G.; Rodriguez, A. Future Ed. Chem.
2013, 5, 1763.
4
(a) Tao, Y.; Wang, Q.; Ao, L.; Zhong, C.; Yang, C.; Qin,
J.; Ma, D. J. Phys. Chem. C 2010, 114, 601. (b) Wu, P. L.;
Feng, X. J.; Tam, H. L.; Wong, M. S.; Cheah, K. W. J.