Angewandte
Chemie
dendrimers[6,17] and main chain polymers.[18] The mesophases
we report here represent combinations of spheroids or
columns with layers. Hence, a higher-than-usual level of
structural complexity is achieved through the presence of
three incompatible molecular moieties, instead of two as in
more conventional amphiphiles. Though there have been
reports of several complex polymer morphologies in triblock
copolymers[19] the present morphologies are different with
regards to their structure and size. For example, “spheres-on-
layer” morphologies were reported for linear ABC block
copolymers, whereas the Rho phase represents a “spheres-in-
layer” morphology. Similarly, in the ChLhex phase the
cylinders are arranged perpendicular to the layer planes,
whereas in the “cylinder-on-layer” polymer morphology the
columns run parallel to the layers. Additionally, these ordered
structures occur at a significantly smaller length scale (3–
10 nm) than those of the block copolymers (10 to > 100 nm).
In the ChLhex phase reported here, the polar regions
represent well defined ion-carrying channels, which can be
modified by molecular design and influenced by external
stimuli. Hence, these or similar materials might be useful, for
example, as components in ion-conducting nanodevices. One
can also envisage their use as ion-triggered gate valves,
opened (ChLhex phase) by a solution carrying large ions and
closed (Rho phase) when small or no ions are present. The
study of the current structures may also shed new light on
ionic channels in biological systems and on transport across
lipid membranes.[20] Being mechanically more robust than
columnar liquid crystals and readily surface-aligned,[21] the 3D
mesophases may also be used for encapsulating low-molec-
ular and polymeric guests, such as drugs, and electrolumines-
cent[22] or electronically conducting polymers[23] and biopol-
ymers.[24]
Y. Liu, V. S. K. Balagurusamy, P. A. Heiney, J.Am.Chem.Soc.
2004, 126, 6078 – 6094.
[7] Introduction of chirality is an alternative way to modify
mesophase structures, especially of lamellar phases: H.-S.
Kitzerow, C. Bahr, Chirality in Liquid Crystals, Springer, New
York, 2001.
[8] X. H. Cheng, M. K. Das, S. Diele, C. Tschierske, Angew.Chem.
2002, 114, 4203 – 4207; Angew.Chem . Int.Ed. 2002, 41, 4031 –
4035; X. H. Cheng, M. Prehm, M. K. Das, J. Kain, U. Baumeis-
ter, S. Diele, D. Leine, A. Blume, C. Tschierske, J.Am.Chem.
Soc. 2003, 125, 10977 – 10996; M. Prehm, S. Diele, M. K. Das, C.
Tschierske, J.Am.Chem.Soc. 2003, 125, 614 – 615.
[9] C. Tschierske, J.Mater.Chem.
Tschierske, J.Mater.Chem. 2001, 11, 2647 – 2671; C. Tschierske,
Ann.Rep.Progr.Chem., Ser.C 2001, 97, 191 – 268.
1998, 8, 1485 – 1508; C.
[10] F. Hildebrandt, J. A. Schröter, C. Tschierske, R. Festag, M.
Wittenberg, J. H. Wendorff, Adv.Mater. 1997, 9, 564 – 567; J. A.
Schröter, C. Tschierske, M. Wittenberg, J.-H. Wendorff, Angew.
Chem. 1997, 109, 1160 – 1163; Angew.Chem.Int.Ed.Engl. 1997,
36, 1119 – 1121; R. Plehnert, J. A. Schröter, C. Tschierske, J.
Mater.Chem. 1998, 8, 2611 – 2626.
[11] J. P. Wolfe, R. A. Singer, B. H. Yang, S. L. Buchwald, J.Am.
Chem.Soc. 1999, 121, 9550 – 9561.
[12] M. C. Holmes, Curr.Opin.Colloid Interface Sci. 1998, 3, 485 –
492.
[13] I. W. Hamley, The Physics of Block-Copolymers, Oxford Uni-
versity Press, Oxford, 1998, pp. 24 – 130.
[14] M. Lee, B.-K. Cho, W.-C. Zin, Chem.Rev. 2001, 101, 3869 – 3892;
J.-H. Ryu, N.-K. Oh, W.-C. Zin, M. Lee, J.Am.Chem.Soc. 2004,
126, 3551 – 3558.
[15] The optical uniaxiality of this phase is consistent with the
terphenyl units having an average orientation perpendicular to
the layer planes.
[16] M. Prehm, S. Diele, M. K. Das, C. Tschierske, J.Am.Chem.Soc.
2003, 125, 614 – 615.
[17] L. Gehringer, C. Bourgogne, D. Guillon, B. Donnio, J.Am.
Chem.Soc. 2004, 126, 3856 – 3867; M. Marcos, A. Omenat, J. L.
Serrano, C.R.Chim. 2003, 6, 947 – 957.
[18] K. Fu, N. Sekine, M. Sone, M. Tokita, J. Watanabe, Polym.J.
2002, 34, 291 – 297.
Received: May 24, 2004
[19] S. Sioula, N. Hadjichristidis, E. L. Thomas, Macromolecules
1998, 31, 5272 – 5277; V. Abetz in Supramolecular Polymers,
(Ed.: A. Ciferri), Marcel Dekker, New York, 2000, pp. 215 – 262;
J. Beckmann, C. Auschra, R. Stadler, Macromol.Rapid
Commun. 1994, 15, 67 – 72; H. Hꢀckstꢁdt, A. Göpfert, V.
Abetz, Macromol.Chem.Phys. 2000, 201, 296 – 307.
[20] D. A. Doyle, J. M. Cabral, R. A. Pfuetzner, A. Kuo, J. M. Gulbis,
S. L. Cohen, B. T. Chait, R. MacKinnon, Science 1998, 280, 69 –
77.
[21] Between glass substrates (microscope slides), a homeotropic
alignment of the ChLhex phases (channels perpendicular to the
substrate surfaces) is spontaneously formed by slow cooling from
the isotropic melted state. This alignment is indicated by the
optically isotropic appearance of the thin films obtained in this
way. The homeotropic alignment is found over large areas
(several square centimeters), only at the edges and around gas
bubbles a birefringent texture (defects) can be found.
[22] Z. N. Bao, K. R. Amundson, A. J. Lovinger, Macromolecules
1998, 31, 8647 – 8649.
Published Online: August 19, 2004
Keywords: alkali metals · liquid crystals · mesophases ·
.
self-assembly · supramolecular chemistry
[1] B. Moulton, M. J. Zaworotko, Chem.Rev. 2001, 101, 1629 – 1658;
S. L. James, Chem.Soc.Rev. 2003, 32, 276 – 288; C. N. R. Rao, S.
Natarajan, R. Vaidhyanathan, Angew.Chem. 2004, 116, 1490 –
1521, Angew.Chem . Int.Ed. 2004, 43, 1466 – 1496; S. Kitagawa,
R. Kitaura, S. Noro, Angew.Chem. 2004, 116, 2388 – 2430;
Angew.Chem . Int.Ed. 2004, 43, 2334 – 2375; S. L. James, Chem.
Soc.Rev. 2003, 32, 276 – 288.
[2] G. T. Steward, Liq.Cryst. 2004, 31, 443 – 471.
[3] P. Kirsch, M. Bremer, Angew.Chem. 2000, 112, 4384 – 4405;
Angew.Chem . Int.Ed. 2000, 39, 4216 – 4235; D. Pauluth, K.
Tarumi, J.Mater.Chem. 2004, 14, 1219 – 1227.
[4] D. Demus, J. W. Goodby, G. W. Gray, H.-W. Spiess, V. Vill,
Handbook of Liquid Crystals, Vol.1–3 , Wiley-VCH, Weinheim,
1998.
[5] K. Borisch, S. Diele, P. Göring, H. Kresse, C. Tschierske, J.Mater.
Chem. 1998, 8, 529 – 543; C. Tschierske, Curr.Opin.Colloid
Interface Sci. 2002, 7, 69 – 80.
[6] G. Ungar, Y. Liu, X. Zeng, V. Percec, W.-D. Cho, Science 2003,
299, 1208 – 1211; X. Zeng, G. Ungar, Y. Liu, V. Percec, A. E.
Dulcey J. K. Hobbs, Nature 2004, 428, 157 – 160. V. Percec, C. M.
Mitchell, W.-D. Cho, S. Uchida, M. Glodde, G. Ungar, X. Zeng,
[23] V. Percec, M. Glodde, T. K. Bera, Y. Miura, I. Shiyanovskaya,
K. D. Singer, V. S. K. Balagurusamy, P. A. Heiney, I. Schnell, A.
Rapp, H.-W. Spiess, S. D. Hudsonk, H. Duank, Nature 2002, 419,
384 – 387.
[24] I. Koltover, T. Salditt, J. O. Radler, C. R. Safinya, Science 1998,
281, 78 – 81.
Angew. Chem. Int. Ed. 2004, 43, 4621 –4625
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
4625