P. Gavin˜a, S. Tatay / Tetrahedron Letters 47 (2006) 3471–3473
3473
in toluene at ꢀ78 °C,10 followed by in situ addition of
tributyltin chloride. Compound 9 could thus be isolated
in 88% yield after a short column chromatography on
alumina. Finally, reaction of 9 with the bromobipyridine
8 under Stille cross-coupling conditions (refluxing tolu-
ene in the presence of a catalytic amount of Pd(PPh3)4)
afforded the monobromo substituted terpyridine 3 in
82% yield.11
Rojo, J.; Romero-Salguero, F. J.; Uppadine, L. H.; Lehn,
J.-M. Angew. Chem., Int. Ed. 2004, 43, 3644–3662.
2. (a) Molecular Catenanes, Rotaxanes and Knots; Dietrich-
Buchecker, C., Sauvage, J.-P., Eds.; Wiley-VCH: Wein-
heim, 1999; (b) Collin, J.-P.; Dietrich-Buchecker, C.;
´
Gavina, P.; Jimenez-Molero, M. C.; Sauvage, J.-P. Acc.
˜
Chem. Res. 2001, 34, 477–487.
3. Schubert, U. S.; Eschbaumer, C. Angew. Chem., Int. Ed.
2002, 41, 2892–2926.
4. Some representative examples: (a) Constable, E. C.; Ward,
M. D. J. Chem. Soc., Dalton Trans. 1990, 1405–1409; (b)
At this point, we tried to obtain either a boron or tin
derivative of the precursors 2 or 3 using classical
metal–halogen exchange methodologies with very poor
results. We could finally manage to obtain a boronic
ester derivative of the terpy ligand 3 by using the palla-
dium catalyzed Miyaura cross-coupling reaction.12
Thus, 3 was reacted with bis(neopentyl glycolato)dibo-
ron in DMSO in the presence of potassium acetate
and a catalytic amount of Pd(dppf)Cl2. Pure 5-(neopent-
yl glycolatoboron)-500-methyl-2,20:60,200-terpyridine (10)
was isolated as a white solid after recrystallization from
EtOH/CH2Cl2 in 65% yield. The desired ditopic ligand 1
could be finally obtained in 67% yield by a Suzuki cross-
coupling reaction between boronic ester 10 and the
bromophenanthroline 2.13
´
Cardenas, D. J.; Sauvage, J.-P. Synlett 1996, 916–918; (c)
Ziessel, R.; Stroh, C. Tetrahedron Lett. 2004, 45, 4055–
4501; (d) Dietrich-Buchecker, C.; Colasson, B.; Jouvenot,
D.; Sauvage, J.-P. Chem. Eur. J. 2005, 11, 4374–4386; (e)
Zong, R.; Thummel, R. P. Inorg. Chem. 2005, 44, 5984–
5986; (f) Zong, R.; Wang, D.; Hammitt, R.; Thummel, R.
P. J. Org. Chem. 2006, 71, 167–175.
5. (a) Lehmann, U.; Henze, O.; Schluter, A. D. Chem. Eur. J.
¨
1999, 5, 854–859; (b) Benaglia, M.; Ponzini, F.; Woods, C.
R.; Siegel, J. S. Org. Lett. 2001, 3, 967–969.
6. (a) Gavina, P.; Sauvage, J.-P. Tetrahedron Lett. 1997, 38,
˜
3521–3524; (b) Belfrekh, N.; Dietrich-Buchecker, C.;
Sauvage, J.-P. Tetrahedron Lett. 2001, 42, 2779–2781; (c)
´
Jimenez-Molero, M.-C.; Dietrich-Buchecker, C.; Sauvage,
J.-P. Chem. Eur. J. 2002, 8, 1456–1466; (d) Champin, B.;
Sartor, V.; Sauvage, J.-P. New J. Chem. 2006, 30, 22–25.
7. Saitoh, Y.; Koizumi, T.; Osakada, K.; Yamamoto, T.
Can. J. Chem. 1997, 75, 1336–1339.
8. For a recent synthesis of halopyridin-2-yl-boronic esters,
see: Bouillon, A.; Lancelot, J.-C.; Santos, J. S. O.; Collot,
V.; Bovy, P. R.; Rault, S. Tetrahedron 2003, 59, 10043–
10049.
9. Schubert, U. S.; Eschbaumer, C.; Hochwimmer, G.
Synthesis 1999, 779–782.
10. Wang, X.; Rabbat, P.; O’Shea, P.; Tillyer, R.; Grabowski,
E. J. J.; Reider, P. J. Tetrahedron Lett. 2000, 41, 4335–
4338.
In conclusion, the synthesis of a novel ditopic ligand in
which a phen moiety is directly bonded through its 3-po-
sition to the 5-position of a terpy unit is described. This
ligand will be used as a linear thread in the construction
of bistable metallic rotaxanes.2 In addition complexa-
tion studies of this ligand with different transition metals
are currently in progress. Particularly, we expect that the
photophysical properties of the ruthenium(II) bis-ter-
pyridine complex will be of special interest.14
11. Compound 3: 1H NMR (CDCl3, 300 MHz): d 8.73 (d,
J = 2.3 Hz, 1H), 8.55–8.50 (m, 2H), 8.47 (d, J = 8.1 Hz,
1H), 8.43 (dd, J = 7.8 and 0.9 Hz, 1H), 8.39 (dd, J = 7.8
and 0.9 Hz, 1H), 7.96 (dd, J = 8.5 and 2.3 Hz, 1H), 7.94 (s,
J = 7.8 Hz, 1H), 7.66 (dd, J = 8.1 and 1.77 Hz, 1H), 2.42
(s, 3H). HRMS (EI): calcd for C16H12N3Br 325.021, found
325.023.
Acknowledgements
This work has been supported by the Spanish Ministerio
y Ciencia (MAT2004-03849). P.G.
acknowledges the Spanish Government for a Ramon y
´
de Educacion
´
Cajal contract, and S.T. for a Ph.D. fellowship.
12. Ishimira, T.; Murata, M.; Miyaura, N. J. Org. Chem.
1995, 60, 7508–7510.
13. Ligand 1: 1H NMR (CDCl3, 300 MHz): d 9.5 (d,
J = 2.3 Hz, 1H), 9.44 (d, J = 2.3 Hz, 1H), 9.12 (d,
J = 2.0 Hz, 1H), 8.82 (d, J = 8.3 Hz, 1H), 8.59–8.43 (m,
5H), 8.37 (d, J = 2.3 Hz, 1H), 8.26 (dd, J = 8.3 and
2.4 Hz, 1H), 7.99 (t, J = 7.8 Hz, 1H), 7.92 (s, 2H), 7.74 (d,
J = 8.7 Hz, 2H), 7.70 (s, 1H), 7.10 (d, J = 8.7 Hz, 2H),
3.91 (s, 3H) 2.44 (s, 3H). HRMS(FAB): calcd for
C35H25N5O1 531.206, found 531.205.
References and notes
1. (a) Lehn, J.-M. Supramolecular Chemistry: Concepts and
Perspectives; VCH: Weinheim, 1995; (b) Comprehensive
Supramolecular Chemistry; Sauvage, J.-P., Hosseini, W.,
Eds.; Pergamon, 1996; (c) Hanan, G. S.; Arana, C. R.;
Lehn, J.-M.; Fenske, D. Angew. Chem., Int. Ed. Engl.
1995, 34, 1122–1124; (d) Schmittel, M.; Kalsani, V.; Bats,
W. J. Inorg. Chem. 2005, 44, 4115–4117; (e) Ruben, M.;
14. Bolink, H. J.; Cappelli, L.; Coronado, E.; Gavina, P.
˜
Inorg. Chem. 2005, 44, 5966–5968.