12
C. Bates et al. / Phytochemistry 67 (2006) 5–12
´
Horenstein, B.A., Parkin, D.W., Estupinan, B., Schramm, V.L., 1991.
˜
Mechanism from Isotope Effects. CRC Press, Boca Raton, FL, pp.
269–290.
Parkin, D.W., 1996. Purine-specific nucleoside N-ribohydrolase from
Trypanosoma brucei brucei. Purification, specificity, and kinetic mech-
anism. J. Biol. Chem. 271, 21713–21719.
Transition-state analysis of nucleoside hydrolase from Crithidia
fasciculata. Biochemistry 30, 10788–10795.
Horenstein, B.A., Zabinski, R.F., Schramm, V.L., 1993. A new class of C-
nucleoside analogues-1-(S)-aryl-1,4-dideoxy-1,4-imino-D-ribitols, tran-
sition state analogue inhibitors of nucleoside hydrolase. Tetrahedron
Lett. 34, 7213–7216.
Hunt, C., Gillani, N., Farone, A., Rezaei, M., Kline, P., 2005. Kinetic
isotope effects of nucleoside hydrolase from Escherichia coli. Biochim.
Biophys. Acta 1751, 140–149.
Imagawa, H., Yamano, H., Inoue, K., Takino, Y., 1979. Purification and
properties of adenosine nucleosidases from tea leaves. Agric. Biol.
Chem. 43, 2337–2342.
´
Parkin, D.W., Horenstein, B., Abdulah, D.R., Estupinan, B., Schramm,
˜
V.L., 1991a. Nucleoside hydrolase from Crithidia fasciculata. Meta-
bolic role, purification, specificity, and kinetic mechanism. J. Biol.
Chem. 266, 20658–20665.
Parkin, D.W., Mentch, F., Banks, G., Horenstein, B., Schramm, V.L.,
1991b. Transition-state analysis of a Vmax mutant AMP nucleosidase
by the application of heavy-atom kinetic isotope effects. Biochemistry
30, 4586–4594.
Kline, P.C., Serianni, A., 1990. 13C-enriched ribonucleosides: Synthesis
and application 13C–1H and 13C–13C spin-coupling constants to assess
furanose and N-glycoside conformations. J. Am. Chem. Soc. 112,
7373–7381.
Pelle, R., Schramm, V.L., Parkin, D.W., 1998. Molecular cloning and
expression of a purine-specific N-ribohydrolase from Trypanosoma
brucei brucei. Sequence, expression, and molecular analysis. J. Biol.
Chem. 273, 2118–2126.
Koerner, T., Westaway, K.C., Poirier, R.A., Wang, Y., 2000. An
unusually large secondary a-deuterium kinetic isotope effect in hydride
ion SN2 reactions. Can. J. Chem. 78, 1067–1072.
Koshiishi, C., Kato, A., Yama, S., Crozier, A., Ashihara, H., 2001. A new
caffeine biosynthetic pathway in tea leaves: utilization of adenosine
released from the S-adenosyl-L-methionine cycle. FEBS Lett. 499, 50–
54.
Kurtz, J., Exinger, F., Erbs, P., Jund, R., 2002. The URH1 uridine
ribohydrolase of Saccharomyces cerevisiae. Curr. Genet. 41, 132–141.
Lai, T.F., Marsh, R.E., 1972. The crystal structure of adenosine. Acta
Crystallogr., Sect. B 28, 1982–1989.
Lee, W.J., Pyler, R.E., 1986. Nucleic acid degrading enzymes of barley
mait. III. Adenosine nucleosidase from malted barley. Am. Soc. Brew.
Chem. J. 44, 86–90.
Petersen, C., Moller, L.B., 2001. The rihA, rihB, and rihC ribonucleoside
hydrolases of Escherichia coli. J. Biol. Chem. 276, 884–894.
Poirier, R.A., Wang, Y., Westaway, K.C., 1994. A theoretical study of the
relationship between secondary a-deuterium kinetic isotope effects and
the structure of SN2 transition states. J. Am. Chem. Soc. 116, 2526–
2533.
Poulton, J.E., Butt, V.S., 1976. Partial purification and properties of
adenosine nucleosidase from leaves of spinach beet (Beta vulgaris L.).
Planta 131, 179–185.
Schramm, V.L., Horenstein, B.A., Kline, P.C., 1994. Transition state
analysis and inhibitor design for enzymatic reactions. J. Biol. Chem.
269, 18259–18262.
Sethi, S., Gupta, S., Jenkins, E., Townsend, L., McCloskey, J., 1982. Mass
spectrometry of nucleic acid constituents. Electron ionization spectra
of selectively labeled adenines. J. Am. Chem. Soc. 104, 3349–3353.
Shi, W., Schramm, V.L., Almo, S., 1999. Nucleoside hydrolase from
Leishmania major. Cloning, expression, catalytic properties, transition
Le FlocÕh, F., Lafleuriel, J., 1981. The purine nucleosidases of Jerusalem
artichoke shoots. Phytochemistry 20, 2127–2129.
Leszczynska, D., Schneider, Z., Tomaszewski, M., Mackowiak, M., 1984.
Comparative studies on adenosine nucleosidase occurrence in plants.
Ann. Botany 54, 847–849.
˚
state inhibitors, and the 2.5 A crystal structure. J. Biol. Chem. 274,
21114–21120.
Matsson, O., Westaway, K.C., 1998. Secondary deuterium kinetic isotope
effects and transition state structure. In: Bethell, D. (Ed.), Advances in
Physical Organic Chemistry, vol. 31. Academic Press, San Diego, pp.
143–248.
Mazzella, L.J., Parkin, D.W., Tyler, P., Furneaux, R., Schramm, V.L.,
1996. Mechanistic diagnoses of N-ribohydrolases and purine nucleo-
side phosphorylase. J. Am. Chem. Soc. 118, 2111–2112.
Melander, L., Saunders Jr., W.H., 1980. Reactions Rates of Isotopic
Molecules. Wiley, New York, pp. 74–75.
Mentch, F., Parkin, D.W., Schramm, V.L., 1987. Transition-state
structure for N-glycoside hydrolysis of AMP by acid and by AMP
nucleosidase in the presence and absence of allosteric activator.
Biochemistry 26, 921–930.
Sims, L.B., Burton, G.W., Lewis, D.E., 1977Quantum Chemistry Program
Exchange, vol. 337. Indiana University, Bloomington, IN.
Sims, L.B., Lewis, D.E., 1984. Bond order methods for calculating isotope
effects in organic reactions. In: Buncel, E., Lee, C.C. (Eds.), Isotopes in
Organic Chemistry, vol. 6. Elsevier Science, New York, pp. 161–259.
Stern, M.J., Wolfsberg, M., 1966. Simplified procedure for the theoretical
calculation of isotope effects involving large molecules. J. Chem. Phys.
45, 4105–5124.
Swain, C.G., Stivers, E.C., Reuwer, J.F., Schaad, L.J., 1958. Use of
hydrogen isotope effects to identify the attacking nucleophile in the
enolization of ketones catalyzed by acetic acid. J. Am. Chem. Soc. 80,
5885–5893.
´
Versees, W., Decanniere, K., Pelle, R., Depoorter, J., Brosens, E., Parkin,
Miller, R.L., Sabouring, C., Krenitsky, T., Berens, R., Marr, J., 1984.
Nucleoside hydrolases from Trypanosoma cruzi. J. Biol. Chem. 259,
5073–5077.
D.W., Steyaert, J., 2001. Structure and function of a novel purine
specific nucleoside hydrolase from Trypanosoma vivax. J. Mol. Biol.
307, 1363–1379.
´
Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C., 1995. SCOP: A
structural classification of proteins database for the investigation of
sequences and structures. J. Mol. Biol. 247, 536–540.
Orengo, C.A., Michie, A.D., Jones, S., Jones, D.T., Swindells, M.B.,
Thornton, J.M., 1997. CATH – a hierarchic classification of protein
domain structures. Structure 5, 1093–1108.
Versees, W., Decanniere, K., Van Holsbeke, E., Devroede, N., Steyaert, J.,
2002. Enzyme-substrate interactions in the purine-specific nucleoside
hydrolase from Trypanosoma vivax. J. Biol. Chem. 277, 15938–15946.
Verse´es, W., Steyeart, J., 2003. Catalysis by nucleoside hydrolases. Curr.
Opin. Struct. Biol. 13, 731–738.
Vorbruggen, H., Krolikiewicz, K., Bennua, B., 1981. Nucleoside synthesis
¨
Parkin, D.W., 1991. Methods for the determination of competitive and
noncompetitive kinetic isotope effects. In: Cook, P.F. (Ed.), Enzyme
with trimethylsilyl triflate and perchlorate as catalysts. Chem. Ber. 114,
1234–1255.