564
Michael M. Haley
SYNLETT
"yes". (2) Aromaticity. Systems like 21 are Hückel [4n+2] π-electron
aromatics. To date, though, it has been difficult to quantify just how
weak the diatropic ring current is. Annelating the DBA to a
Buckminsterfullerenes, Billups, W. E; Ciufolini, M. A. (Eds.);
VCH Publishers: New York, NY, 1993.
(9) Heck, R. F. Palladium Reagents in Organic Syntheses, Academic
50
dimethyldihydropyrene core (e.g., 48) should provide the answer. (3)
Press: London, 1985.
Organometallics. The use of DBAs as ligands in transition metal
(10) Bachmann, P. K.; Messier, R. Chem. Eng. News 1989, 67(20), 24.
(b) Simpson, M. New Sci. 1988, 117(1603), 50.
14,47,49
chemistry is very limited.
We feel that there is a wealth of
unexplored chemistry utilizing these systems. Macrocycle 49 is but one
such complex we are actively seeking to prepare. (4) Materials
properties. As mentioned several times in this account, DBAs have the
potential for forming novel materials with useful properties. We have
only scratched the surface of this facet. Our synthetic methods allow us
to prepare a wide variety of DBAs in sufficient quantity to permit further
study. This should allow us to systematically study the reaction
chemistry and possible materials properties of our macrocycles. With
perseverance and a little luck, we just might "find a diamond in the
rough". On the other hand, given the subject of this account, it might be
more appropriate to "find the fullerene in the soot"!
(11) (a) Neenan, T. X.; Callstrom, M. R.; Scarmoutzos, L. M.; Stewart,
K. R.; Whitesides, G. M.; Howes, V. R. Macromolecules 1988, 21,
3528. (b) Callstrom, M. R.; Neenan, T. X.; Whitesides, G. M. ibid.
1988, 21, 3530.
(12) (a) Balaban, A. T.; Rentia, C. C.; Ciupitu, E. Rev. Roum. Chim.
1968, 13, 231. (b) Hoffmann, R.; Hughbanks, T.; Kertész, M.;
Bird, P. H. J. Am. Chem. Soc. 1983, 105, 4831. (c) Johnston, R. L.;
Hoffmann, R. ibid. 1989, 111, 810. (d) Baughman, R. H.; Galvao,
D. S. Nature (London) 1993, 365, 735. (e) Best, S. A.; Bianconi, P.
A.; Merz, K. M., Jr. J. Am. Chem. Soc. 1995, 117, 9251.
(13) Huynh, C.; Linstrumelle, G. Tetrahedron 1988, 44, 6337.
(14) For an alternate cyclooligomerization synthesis of 4 (three steps
from phenylacetylene, 24% overall yield) and numerous
references of its use as a ligand in organometallic chemistry, see:
Solooki, D.; Ferrara, J. D.; Malaba, D.; Bradshaw, J. D.; Tessier,
C. A.; Youngs, W. J. Inorg. Synth. 1997, 31, 122.
(15) (a) Diederich, F. Nature (London) 1994, 369, 199. (b) Diederich,
F. in Modern Acetylene Chemistry, Stang, P. J.; Diederich, F.
(Eds.); VCH: Weinheim, 1995, p 443.
(16) (a) Moore, J. S. Acct. Chem. Res. 1997, 30, 402. (b) Young, J. K.;
Moore, J. S. in Modern Acetylene Chemistry, Stang, P. J.;
Diederich, F. (Eds.); VCH: Weinheim, 1995, p 415.
Acknowledgments
The author is deeply indebted to the graduate and undergraduate co-
workers mentioned in this account. Without their hard work and tireless
dedication, none of the results described herein would have been
possible. We gratefully acknowledge the National Science Foundation,
The Petroleum Research Fund (administered by the American Chemical
Society), and the University of Oregon for financial support.
(17) (a) Brandsma, L. Preparative Acetylenic Chemistry, 2nd ed.,
Elsevier: Amsterdam, 1988. (b) Colvin, E. W. Silicon Reagents in
Organic Synthesis, Academic Press: London, 1988.
(18) Moore, J. S.; Weinstein, E. J.; Wu, Z. Tetrahedron Lett. 1991, 32,
2465.
(19) Zhang, J.; Pesak, D. J.; Ludwick, J. L.; Moore, J. S. J. Am. Chem.
Soc. 1994, 116, 4227.
References and Notes
(1) (a) Boese, R. In Advances in Strain in Organic Chemistry, Vol. 2;
Halton, B., Ed.; JAI Press: London, 1992, p 191. (b) Billups, W.
E.; Arney, B. E., Jr. In Advances in Strain in Organic Chemistry,
Vol. 6; Halton, B., Ed.; JAI Press: London, 1997, p 35.
(20) Kehoe, J. M.; Haley, M. M., unpublished results.
(21) Kiley, J. H.; Haley, M. M., unpublished results.
(22) Josh Kehoe, Ryan Petersen, and Charles Johnson were the
unfortunate souls to have gotten stuck with all the variations
towards 8b. I gratefully acknowledge their many efforts.
(2) Diercks, R.; Armstrong, J. C.; Boese, R.; Vollhardt, K. P. C.
Angew. Chem., Int. Ed. Engl. 1986, 98, 270.
(23) Robert Schneidmiller of Professor David Johnson's laboratory at
Oregon has kindly provided us with all of the needed DSC results
over the last 2+ years.
(3) Wright, M. E. Macromolecules 1989, 22, 3256.
(4) Baughman, R. H.; Eckhardt, H.; Kertesz, M. J. Chem. Phys. 1987,
87, 6687.
(24) Zhou, Q.; Carroll, P. J.; Swager, T. M. J. Org. Chem. 1994, 59,
1294.
(5) Echavarren, A. M.; Stille, J. K. J. Am. Chem. Soc. 1987, 109,
5478, and references therein.
(25) Baldwin, K. P; Matzger, A. J.; Scheiman, D. A.; Tessier, C. A.;
Vollhardt, K. P. C.; Youngs, W. J. Synlett 1995, 1215.
(6) For a comprehensive review of annulene chemistry, see: Balaban,
A. T.; Banciu, M.; Ciorba, V. Annulenes, Benzo-, Hetero-, Homo-
Derivatives and their Valence Isomers, Vol. 1-3, CRC Press: Boca
Raton, FL. 1987.
(26) Adam Matzger, the talented graduate student who prepared 19,
joined Peter's group just as I left for Oregon; thus, I was unaware
of the projects Peter had him exploring.
(27) (a) Polydiacetylenes, Bloor, D.; Chance, R. R. (Eds.); Martinus
Nijhoff: Boston, 1985, and references therein. (b) Wegner, G. Pure
Appl. Chem. 1977, 49, 443.
(7) (a) Yasuhara, A.; Satake, T.; Iyoda, M.; Nakagawa, M.
Tetrahedron Lett. 1975, 895. (b) Staab, H. A.; Graf, F. Chem. Ber.
1970, 103, 1107. (c) Darby, N.; Cresp, T. M.; Sondheimer, F. J.
Org. Chem. 1977, 42, 1960.
(28) Haley, M. M.; Brand, S. C.; Pak, J. J. Angew. Chem., Int. Ed. Engl.
1997, 36, 836.
(8) (a) Krätschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D.
R. Nature (London) 1990, 347, 354. (b) Dresselhaus, M. S.;
Dresselhaus, G.; Eklund, P. C. Science of the Fullerenes and
Carbon Nanotubes, Academic Press: San Diego, CA. 1995; (c)
(29) The first edition of reference 17a contained the preparation of the
parent molecule, but stated that the diyne proved to be very
unstable. Other groups have reported similar problems using free