S.-H. Chiuet al.
yellow liquid (4.2 g). This crude material was used directly in the next re-
action without purification.
[6] Most of these supramolecular sensing ensembles comprise acyclic
receptors and indicators; see: S. L. Wiskur, H. Ait-Haddou, J. J. Lav-
igne, E. V. Anslyn, Acc. Chem. Res. 2001, 34, 963–972.
Tetrakistosylate 5: A solution of TsCl (4.9 g, 25.7 mmol) in CH2Cl2
[7] a) A. Ueno, Supramol. Sci. 1996, 3, 31–36; b) T. Hayashita, A. Ya-
mauchi, A.-J. Tong, J. C. Lee, B. D. Smith, N. Teramae, J. Inclusion
Phenom. Macrocyclic Chem. 2004, 50, 87–94.
(25 mL) was added over 10 min to
a solution of tetraol 4 (4.2 g,
5.0 mmol) and triethylamine (3.6 mL, 25.7 mmol) in CH2Cl2 (50 mL) at
08C. The mixture was slowly warmed to room temperature, stirred for a
further 12 h, and then partitioned between CH2Cl2 (300 mL) and H2O
(300 mL). The organic layer was separated, dried (MgSO4), concentrated,
and purified (SiO2; EtOAc/hexane, 7:3) to afford the tetrakistosylate 5 as
a pale-yellow liquid (2.5 g, 35%). 1H NMR (400 MHz, CDCl3): d=1.52
(s, 4H), 1.83 (s, 6H), 2.40 (s, 12H), 3.55–3.80 (m, 32H), 4.00–4.15 (m,
16H), 6.85 (s, 4H), 7.29 (d, J=8 Hz, 8H), 7.76 ppm (d, J=8 Hz, 8H);
13C NMR (100 MHz, CDCl3): d=19.0, 21.9, 36.4, 41.4, 68.7, 69.3, 69.6,
70.0, 70.6, 70.7, 109.1, 127.5, 129.4, 132.4, 139.7, 144.2, 145.9 ppm; HR-MS
(FAB): m/z calcd for C70H91O24S4: 1443.4783 [M+H]+; found: 1443.4794.
[8] Because of insufficiently strong binding between the host and the in-
dicator—that is, to avoid any possible background signal from the
free indicator—supramolecular optical probes were generally pre-
pared as solutions containing millimolar concentrations of the host
and micromolar concentrations of the indicator. See: a) A. P. Bisson,
V. M. Lynch, M.-K. C. Monahan, E. V. Anslyn, Angew. Chem. 1997,
109, 2435–2437; Angew. Chem. Int. Ed. Engl. 1997, 36, 2340–2342;
b) K. Niikura, A. P. Bisson, E. V. Anslyn, J. Chem. Soc. Perkin
Trans. 2 1999, 1111–1114; c) Ref. 7b.
[9] Noncovalent molecular cages have been prepared; see: a) M. Kim,
G. W. Gokel, J. Chem. Soc. Chem. Commun. 1987, 1686–1688;
b) J. M. C. Kerckhoffs, F. W. B. van Leeuwen, A. L. Spek, K. Kooij-
man, M. Crego-Calama, D. N. Reinhoudt, Angew. Chem. 2003, 115,
5895–5900; Angew. Chem. Int. Ed. 2003, 42, 5717–5722; c) M.
Yoshizawa, S. Miyagi, M. Kawano, K. Ishiguro, M. Fujita, J. Am.
Chem. Soc. 2004, 126, 9172–9173; cryptand-type host molecules
may be considered as the simplest covalently linked molecular
cages; see: d) K. A. Nielsen, J. O. Jeppesen, E. Levillain, N. Thorup,
J. Becher, Org. Lett. 2002, 4, 4189–4192; e) D. F. Perkins, L. F.
Lindoy, G. V. Meehan, P. Turner, Chem. Commun. 2004, 152–153;
f) M. Bonizzoni, L. Fabbrizzi, G. Piovani, A. Taglietti, Tetrahedron
2004, 60, 11159–11162; cryptophanes, carcerands, and hemicarcer-
ands may also be considered as covalently linked molecular cages;
see: g) A. Collet, J.-P. Dutasta, B. Lozach, J. Canceil, Top. Curr.
Chem. 1993, 165, 103–130; h) A. Jasat, J. C. Sherman, Chem. Rev.
1999, 99, 931–967; i) R. Warmuth, Acc. Chem. Res. 2001, 34, 95–
105.
Molecular cage 1: K2CO3 (5.3 g, 38.4 mmol) was added to a solution of
biscatechol
2 (276 mg, 0.93 mmol) and tetrakistosylate 5 (1.3 g,
0.93 mmol) in CH3CN (100 mL) at room temperature. The mixture was
heated under reflux for 12 days and then the organic solvent was evapo-
rated under reduced pressure. The crude product was partitioned be-
tween CH2Cl2 (250 mL) and H2O (250 mL) and then the organic layer
was collected, dried (MgSO4), and concentrated to give a yellow solid,
which was purified (SiO2; MeOH/CH2Cl2, 5:95) to afford the molecular
cage 1 as a white solid (78 mg, 8%). M.p. >2888C (decomp); 1H NMR
(400 MHz, CDCl3): d=1.50 (s, 8H), 1.77 (s, 12H), 3.60–3.90 (m, 32H),
3.95–4.10 (m, 16H), 6.72 ppm (s, 8H); 13C NMR (100 MHz, CDCl3): d=
19.0, 36.3, 41.3, 69.8, 69.9, 71.0, 108.3, 139.5, 145.7 ppm; HR-MS (FAB):
m/z calcd for C60H77O16: 1053.5212 [M+H]+; found: 1053.5216.
[10] a) T. L. Tarnowski, D. J. Cram, J. Chem. Soc. Chem. Commun. 1976,
661–663; b) R. C. Helgeson, T. L. Tarnowski, D. J. Cram, J. Org.
Chem. 1979, 44, 2538–2550.
Acknowledgements
This study was supported by the National Science Council, Taiwan (NSC-
94-2113M-002-011).
[11] P. R. Ashton, S. E. Boyd, A. Brindle, S. J. Langford, S. Menzer, L.
Perez-Garcia, J. A. Preece, F. M. Raymo, N. Spencer, J. F. Stoddart,
A. J. P. White, D. J. Williams, New J. Chem. 1999, 23, 587–602.
[12] A cylindrical host comprising two linked bis(meta-phenylene)[26]-
crown-8 moieties has been prepared; its two crown ether units form
complexes with two paraquat guests independently. See: F. Huang,
L. N. Zakharov, A. L. Rheingold, M. Ashraf-Khorassani, H. W.
Gibson, J. Org. Chem. 2005, 70, 809–813.
[13] J. R. Lakowicz, Principle of Fluorescence Spectroscopy, 2nd ed.,
Plenum, New York, 1999.
[14] V. Balzani, A. Credi, S. J. Langford, A. Prodi, J. F. Stoddart, M. Ven-
turi, Supramol. Chem. 2001, 13, 303–311.
[1] a) A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M.
Huxley, C. P. McCoy, J. T. Rademacher, T. E. Rice, Chem. Rev. 1997,
97, 1515–1566; b) D. T. McQuade, A. E. Pullen, T. M. Swager,
Chem. Rev. 2000, 100, 2537–2574; c) G. W. Gokel, W. M. Leevy,
M. E. Weber, Chem. Rev. 2004, 104, 2723–2750.
[2] a) A. L. Lehninger, Principles of Biochemistry, CBS, Delhi, 1984;
b) L. Stryer, Biochemistry, 3rd ed., Freeman, New York, 1988.
[3] a) A. Minta, R. Y. Tsien, J. Biol. Chem. 1989, 264, 19449–19457;
b) A. P. de Silva, H. Q. N. Gunaratne, J. Chem. Soc. Chem.
Commun. 1990, 186–188; c) A. P. de Silva, H. Q. N. Gunaratne,
G. E. M. Maguire, J. Chem. Soc. Chem. Commun. 1994, 1213–1214;
d) N. R. Cha, S. Y. Moon, S.-K. Chang, Tetrahedron Lett. 2003, 44,
8265–8268; e) Y. Nakahara, T. Kida, Y. Nakatsuji, M. Akashi, J.
Org. Chem. 2004, 69, 4403–4411; f) E. Arunkumar, A. Ajayaghosh,
J. Daub, J. Am. Chem. Soc. 2005, 127, 3156–3164.
[4] a) A. P. de Silva, I. M. Dixon, H. Q. N. Gunaratne, T. Gunnlaugsson,
P. R. S. Maxwell, T. E. Rice, J. Am. Chem. Soc. 1999, 121, 1393–
1394; b) K. Rurack, W. Rettig, U. Resch-Genger, Chem. Commun.
2000, 407–408; c) B. Witulski, M. Weber, U. Bergsträsser, J.-P. Des-
vergne, D. M. Bassani, H. Bouas-Laurent, Org. Lett. 2001, 3, 1467–
1470; d) H. He, M. A. Mortellaro, M. J. P. Leiner, R. J. Fraatz, J. K.
Tusa, J. Am. Chem. Soc. 2003, 125, 1468–1469.
[5] a) F. Fages, J.-P. Desvergne, H. Bouas-Laurent, J.-M. Lehn, Y. Bar-
rans, P. Marsau, M. Meyer, A.-M. Albrecht-Gary, J. Org. Chem.
1994, 59, 5264–5271; b) D. Y. Sasaki, D. R. Shnak, D. W. Pack, F. H.
Arnold, Angew. Chem. 1995, 107, 994–996; Angew. Chem. Int. Ed.
Engl. 1995, 34, 905–907; c) J. Strauss, J. Daub, Org. Lett. 2002, 4,
683–686; d) J.-H. Liao, C.-T. Chen, J.-M. Feng, Org. Lett. 2002, 4,
561–564.
[15] P. ThuØry, B. Masci, Supramol. Chem. 2003, 15, 95–99.
[16] K. A. Connors, Binding Constants, Wiley, New York, 1987.
[17] If we assume that the observation of no free species in the H NMR
1
spectrum of the equimolar mixture of molecular cage
DMDAP[PF6]2 at 10 mm concentration suggests that the free species
presented in the solution are less than 5%, then the binding con-
stant (Ka) between molecular cage 1 and DMDAP[PF6]2 may be es-
timated to be as high as 3.8107 mÀ1
1 and
AHCTREUNG
AHCTREUNG
.
[18] a) P. L. Anelli, P. R. Ashton, R. Ballardini, V. Balzani, M. Delgado,
M. T. Gandolfi, T. T. Goodnow, A. E. Kaifer, D. Philp, M. Pietrasz-
kiewicz, L. Prodi, M. V. Reddington, A. M. Z. Slawin, N. Spencer,
J. F. Stoddart, C. Vicent, D. J. Williams, J. Am. Chem. Soc. 1992, 114,
193–218; b) P.-T. Chiang, P.-N. Cheng, C.-F. Lin, Y.-H. Liu, C.-C.
Lai, S.-M. Peng, S.-H. Chiu, Chem. Eur. J. 2006, 12, 865–876.
[19] Crystal data for [1ꢀDMDAP]
C
¯
1calcd =1.263 gcmÀ3
,
m , T=295 K, orange red
(MoKa)=0.141 cmÀ1
A
plates; 7312 independent measured reflections, F2 refinement, R1 =
0.1338, wR2 =0.2919.
4598
ꢁ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2006, 12, 4594 – 4599