Reversal of Diastereofacial Selectivity in Hydride Reductions of
N-tert-Butanesulfinyl Imines
John T. Colyer, Neil G. Andersen,* Jason S. Tedrow, Troy S. Soukup, and
Margaret M. Faul
Chemistry Process Research and DeVelopment, Amgen Inc., Thousand Oaks, California 91320-1799
ReceiVed May 11, 2006
A variety of N-tert-butanesulfinyl imines were reduced with NaBH4 in THF containing 2% water to
provide the corresponding secondary sulfinamides in high yield and diastereoselectivity. By using the
same sulfinyl imine starting materials and changing the reductant to L-Selectride, the stereoselectivity
could be efficiently reversed to afford the opposite product diastereomer in high yield and selectivity.
In support of a recent medicinal chemistry SAR study, we
required an efficient route to chiral secondary amines that would
allow access to both product antipodes in high stereoselectivity
and would be suitably flexible to work with a variety of
functional groups. The reduction of N-sulfinyl imines, first
reported by Cozzi1 and later studied by Ellman,2 attracted our
attention in part as a result of the increasing commercial
availability of both (R)- and (S)-2-methyl-2-propanesulfin-
amide.3,4 Although the synthesis of amines via addition of carbon
nucleophiles to various N-sulfinyl imines has been widely
investigated5 and exploited in the pharmaceutical industry,6 we
were surprised to find that the corresponding hydride addition
reactions have not been thoroughly studied. Whereas it was clear
from the work of Ellman2 that NaBH4 reduction of tert-butane-
sulfinyl imines provided high levels of diastereofacial control,
it was unclear how other reducing agents would effect the
stereochemical course of the reaction. Although reversals of
diastereofacial selectivity had been reported for addition of
carbon nucleophiles to sulfinyl imines,7 this observation had
not been clearly documented for the corresponding hydride
additions.8,9 We herein disclose our investigations into the
reduction of various N-tert-butanesulfinyl imines and show that
high levels of diastereofacial control can be obtained to provide
(6) (a) Lu, B. Z.; Senanayake, C.; Li, N.; Han, Z.; Bakale, R. P.; Wald,
S. A. Org. Lett. 2005, 7, 2599. (b) Kennedy, A.; Nelson, A.; Perry, A.
Synlett 2004, 6, 967. (c) Kuduk, S. D.; DiPardo, R. M.; Chang, R. K.; Ng,
C.; Bock, M. G. Tetrahedron Lett. 2004, 45, 6641. (d) DeSolms, S. J.;
Ciccarone, T. M.; MacTough, S. C.; Shaw, A. W.; Buser, C. A.; Ellis-
Hutchings, M.; Fernandes, C.; Hamilton, K. A.; Huber, H. E.; Kohl, N. E.;
Lobell, R. B.; Robinson, R. G.; Tsou, N. N.; Walsh, E. S.; Graham, S. L.;
Beese, L. S.; Taylor, J. S. J. Med. Chem. 2003, 46, 2973. (e) DeGoey, D.
A.; Chen, H.-J.; Flosi, W. J.; Grampovnik, D. J.; Yeung, C. M.; Klein, L.
L.; Kempf, D. J. J. Org. Chem. 2002, 67, 2002. (f) Han, Z.; Krishnamurthy,
D.; Grover, P.; Fang, Q. K.; Senanayake, C. H. J. Am. Chem. Soc. 2002,
124, 7880. (g) Lu, Z.-H.; Bhongle, N.; Su, X.; Ribe, S.; Senanayake, C. H.
Tetrahedron Lett. 2002, 43, 8617. (h) Pflum, D. A.; Krishnamurthy, D.;
Han, Z.; Wald, S. A.; Senanayake, C. H. Tetrahedron Lett. 2002, 43, 923.
(i) Plobeck, N.; Powell, D. Tetrahedron: Asymmetry 2002, 13, 303. (j)
Staas, D. D.; Savage, K. L.; Homnick, C. F.; Tsou, N. N.; Ball, R. G. J.
Org. Chem. 2002, 67, 8276. (k) Adamczyk, M.; Reddy, R. E. Tetrahe-
dron: Asymmetry 2001, 12, 1047. (l) Barrow, J. C.; Ngo, P. L.; Pellicore,
J. M.; Selnick, H. G.; Nantermet, P. G. Tetrahedron Lett. 2001, 42, 2051.
(m) Shaw, A. W.; DeSolms, S. J. Tetrahedron Lett. 2001, 42, 7173.
(7) For reversals of diastereofacial selectivity using p-toluenesulfinyl
imines, see: (a) Koriyama, Y.; Nozawa, A.; Hayakawa, R.; Shimizu, M.
Tetrahedron 2002, 58, 9621. (b) Fujisawa, T.; Kooriyama, Y.; Shimizu,
M. Tetrahedron Lett. 1996, 37, 3881. For reversals of diastereofacial
selectivity using tert-butanesulfinyl imines, see: refs 6a and 6i.
* To whom correspondence should be addressed. Tel: 805 447 0597.
(1) (a) Annunziata, R.; Cinquini, M.; Cozzi, F. J. Chem. Soc., Perkin
Trans. 1 1982, 1, 339. (b) Cinquini, M,; Cozzi, F. J. Chem. Soc., Chem.
Commun. 1977, 723.
(2) (a) Kochi, T.; Tang, T. P.; Ellman, J. A. J. Am. Chem. Soc. 2003,
125, 11276. (b) Kochi, T.; Tang, T. P.; Ellman, J. A. J. Am. Chem. Soc.
2002, 124, 6518. (c) Borg, G.; Cogan, D. A.; Ellman, J. A. Tetrahedron
Lett. 1999, 40, 6709.
(3) Both (R)- and (S)-2-methyl-2-propanesulfinamide are readily available
from AstaTech, Inc. in kilogram quantities for $9.90/g and $6.90/g,
respectively.
(4) The sulfinamide starting material may be prepared in two steps via
catalytic asymmetric oxidation of tert-butyl disulfide. See: (a) Weix, D.
J.; Ellman, J. A. Org. Lett. 2003, 5, 1317. (b) Cogan, D. A.; Liu, G.; Kim,
K.; Backes, B. J.; Ellman, J. A. J. Am. Chem. Soc. 1998, 120, 8011.
(5) For recent reviews, see: (a) Zhou, P.; Chen, B.-C.; Davis, F. A.
Tetrahedron 2004, 60, 8003. (b) Zhou, P.; Chen, B.-C.; Davis, F. A.
AdVances in Sulfur Chemistry; Rayner, C. M., Ed.; JAL Press: Greenwich,
CT, 2000; Vol. 2, p 249. (c) Cogan, D. A.; Liu, G.; Ellman, J. A.
Tetrahedron 1999, 55, 8883. (d) Davis, F. A.; Zhou, P.; Chen, B.-C. Chem.
Soc. ReV. 1998, 27, 13.
10.1021/jo0609834 CCC: $33.50 © 2006 American Chemical Society
Published on Web 08/11/2006
J. Org. Chem. 2006, 71, 6859-6862
6859