J. Igarashi et al. / Tetrahedron Letters 45 (2004) 8065–8068
8067
Among the RCO2 groups indicated in entries 2–7 of
Table 1, ClCH2CO2, Cl2CHCO2, and MeOCH2CO2
groups provided better yields of trans-3b. Inter alia,
the MeOCH2CO2 group produced trans-3b as the sole
product in 97% isolated yield without formation of the
corresponding alcohol (entry 6).11,12 In entry 7, the rea-
gent based on CuCN (i.e., 12a) was also examined to
provide trans-3b in 10% lower yield and the alcohol in
12% yield, thus ensuring the excellent result of entry 6
with CuI-based reagent 12b.
vide sufficient reactivity in reaction with (i-PrO)Me2-
SiCH2CuÆMgICl (12b). The generality of the ester
group as a leaving group in allylation reaction is under
investigation.13
Acknowledgements
This work was supported by a Grant-in-Aid for Scien-
tific Research from the Ministry of Education, Science,
Sports, and Culture, Japan.
The product synthesized above (trans-3b) was converted
into 13 by the Tamao reaction8 (56%) followed by silyl-
ation of the resulting alcohol (87%). The transformation
established for trans-3a (Scheme 3) was applied to 13 to
produce piperidine 14 (5 in Scheme 2 with R1 = Ph,
R2 = CH2OTBS, and R3 = Bn) in 57% yield from 13.
References and notes
1. For recent reviews: (a) Weintraub, P. M.; Sabol, J. S.;
Kane, J. M.; Borcherding, D. R. Tetrahedron 2003, 59,
2953–2989; (b) Danieli, B.; Lesma, G.; Passarella, D.;
Silvani, A. Curr. Org. Chem. 2000, 4, 231–261; (c) Laschat,
S.; Dickner, T. Synthesis 2000, 1781–1813; (d) Groaning,
M. D.; Meyers, A. I. Tetrahedron 2000, 56, 9843–9873; (e)
Meyers, A. I.; Andres, C. J.; Resek, J. E.; Woodall, C. C.;
McLaughlin, M. A.; Lee, P. H.; Price, D. A. Tetrahedron
1999, 55, 8931–8952; (f) Fujii, T.; Ohba, M. Heterocycles
1998, 47, 525–539.
In a similar way, cis-isomer of N-benzyl 3-[(MOM-oxy)-
methyl]-4-phenylpiperidine was synthesized as well.
The present transformation was highlighted by synthesis
of the paroxetine intermediate 18,9j which is summarized
in Scheme 5. Reaction of monoacetate 1 with p-F–
C6H4MgCl (3equiv) in the presence of CuI (30mol%)
followed by Mitsunobu inversion with MeOCH2CO2H
afforded 15 in 63% yield from 1. Reaction of 15 with
(i-PrO)Me2SiCH2CuÆMgICl (12b) furnished 16 after Ta-
mao oxidation and subsequent TBS protection. Trans-
formation established for trans-3a to piperidine 9
(Scheme 3) was applied to 16 to produce piperidine 17
efficiently. During the transformation, little influence
of the fluorine atom on the reactivity and the selectivity
was observed. Finally, deprotection of 17 with Bu4NF
furnished 18 in 76% yield. The 1H NMR and 13C
NMR spectra of 18 thus synthesized were consistent
with the data reported.9f
2. (a) Raheem, I. T.; Goodman, S. N.; Jacobsen, E. N.
J. Am. Chem. Soc. 2004, 126, 706–707; (b) Igarashi, J.;
Katsukawa, M.; Wang, Y.-G.; Acharya, H. P.; Kobaya-
shi, Y. Tetrahedron Lett. 2004, 45, 3783–3786; (c) Taylor,
M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2003, 125,
11204–11205; (d) Williams, J. T.; Bahia, P. S.; Snaith, J. S.
Org. Lett. 2002, 4, 3727–3730; (e) Kozikowski, A. P.;
Araldi, G. L.; Boja, J.; Meil, W. M.; Johnson, K. M.;
Flippen-Anderson, J. L.; George, C.; Saiah, E. J. Med.
Chem. 1998, 41, 1962–1969; (f) Hirai, Y.; Terada, T.;
Yamazaki, T.; Momose, T. J. Chem. Soc., Perkin Trans. 1
1992, 517–524; (g) Ihara, M.; Yasui, K.; Taniguchi, N.;
Fukumoto, K. J. Chem. Soc., Perkin Trans. 1 1990, 1469–
1476; (h) Fujii, T.; Ohba, M.; Sakaguchi, J. Chem. Pharm.
Bull. 1987, 35, 3628–3640; (i) Funk, R. L.; Munger, J. D.,
Jr. J. Org. Chem. 1984, 49, 4319–4322; (j) Imanishi, T.;
Inoue, M.; Wada, Y.; Hanaoka, M. Chem. Pharm. Bull.
1982, 30, 1925–1928; (k) Takano, S.; Takahashi, M.;
Hatakeyama, S.; Ogasawara, K. J. Chem. Soc., Chem.
Commun. 1979, 556–557; (l) Uskokovic, M. R.; Hender-
son, T.; Reese, C.; Lee, H. L.; Grethe, G.; Gutzwiller, J. J.
Am. Chem. Soc. 1978, 100, 571–576; (m) Stork, G.;
McElvain, S. M. J. Am. Chem. Soc. 1946, 68, 1053–1057;
(n) Woodward, R. B.; Doering, W. E. J. Am. Chem. Soc.
1945, 67, 860–874.
In summary, an approach to 3,4-disubstituted piperi-
dines was established. An advantage of the approach
is the equal access to trans as well as cis piperidines.
Moreover, the MeOCH2CO2 group was found to pro-
F
OAc
e,f
g,h,i
58%
HO
3. (a) Johnson, T. A.; Curtis, M. D.; Beak, P. J. Am. Chem.
Soc. 2001, 123, 1004–1005; (b) Johnson, T. A.; Jang, D.
O.; Slafer, B. W.; Curtis, M. D.; Beak, P. J. Am. Chem.
Soc. 2002, 124, 11689–11698.
RCO2
63%
1
15, R = CH2OMe
´
4. (a) Amat, M.; Canto, M.; Llor, N.; Ponzo, V.; Perez, M.;
Bosch, J. Angew. Chem., Int. Ed. 2002, 41, 335–338; (b)
´
F
F
´
Amat, M.; Perez, M.; Llor, N.; Bosch, J. Org. Lett. 2002,
4, 2787–2790; (c) Amat, M.; Perez, M.; Llor, N.; Bosch, J.;
a,b,c,d
47%
´
N
OR
OTBS
Lago, E.; Molins, E. Org. Lett. 2001, 3, 611–614.
5. (a) Hattori, H.; Abbas, A. A.; Kobayashi, Y. Chem.
Commun. 2004, 884–885; (b) Ainai, T.; Ito, M.; Kobaya-
shi, Y. Tetrahedron Lett. 2003, 44, 3983–3986; (c)
Kobayashi, Y.; Murugesh, M. G.; Nakano, M.; Takahisa,
E.; Usmani, S. B.; Ainai, T. J. Org. Chem. 2002, 67, 7110–
7123; (d) Ito, M.; Matsuumi, M.; Murugesh, M. G.;
Kobayashi, Y. J. Org. Chem. 2001, 66, 5881–5889; (e)
Kobayashi, Y. Curr. Org. Chem. 2003, 7, 133–147.
Bn
16
17, R = TBS
18, R = H
j
76%
Scheme 5. (a)–(d): See steps (a)–(d) in Scheme 3; (e) p-F–C6H4MgCl
(3equiv), CuI (0.3equiv), THF; (f) MeOCH2CO2H, DIAD, PPh3,
ꢀ78°C; (g) 12b (3equiv), THF, 2h; (h) H2O2, KF, KHCO3, 60–65°C;
(i) TBSCl, imidazole; (j) Bu4NF.