Letters
(8) Crotty, S.; Maag, D.; Arnold, J. J.; Zhong, W.; Lau, J. Y. N.; Hong,
Journal of Medicinal Chemistry, 2006, Vol. 49, No. 21 6169
(23) Fox, J. J.; Van Praag, D. Pyrimidine nucleosides. VIII. Synthesis of
5-nitrocytidine and related nucleosides. J. Org. Chem. 1961, 26, 526-
532.
(24) Fukuhara, T. K.; Visser, D. W. Cytidine derivatives. J. Am. Chem.
Soc. 1955, 77, 2393-2395.
(25) Goldman, D.; Kalman, T. I. Formation of 5- and 6-aminocytosine
nucleosides and nucleotides from the corresponding 5-bromocytosine
derivatives: synthesis and reaction mechanism. Nucleosides Nucle-
otides 1983, 2, 175-187.
(26) Harki, D. A.; Graci, J. D.; Korneeva, V. S.; Ghosh, S. K. B.; Hong,
Z.; Cameron, C. E.; Peterson, B. R. Synthesis and antiviral evaluation
of a mutagenic and non-hydrogen bonding ribonucleoside analogue:
1-beta-D-ribofuranosyl-3-nitropyrrole. Biochemistry 2002, 41, 9026-
9033.
(27) Arnold, J. J.; Cameron, C. E. Poliovirus RNA-dependent RNA
polymerase (3D(pol)). Assembly of stable, elongation-competent
complexes by using a symmetrical primer-template substrate (sym/
sub). J. Biol. Chem. 2000, 275, 5329-5336.
(28) Gohara, D. W.; Ha, C. S.; Ghosh, S. K. B.; Arnold, J. J.; Wisniewski,
T. J.; Cameron, C. E. Production of “authentic” poliovirus RNA-
dependent RNA polymerase (3D(pol)) by ubiquitin-protease-mediated
cleavage in Escherichia coli. Protein Expression Purif. 1999, 17,
128-138.
(29) Pfister, T.; Wimmer, E. Characterization of the nucleoside triphos-
phatase activity of poliovirus protein 2C reveals a mechanism by
which guanidine inhibits poliovirus replication. J. Biol. Chem. 1999,
274, 6992-7001.
(30) Pogolotti, A. L., Jr.; Santi, D. V. High-pressure liquid chromatog-
raphy-ultraviolet analysis of intracellular nucleotides. Anal. Biochem.
1982, 126, 335-345.
(31) Herold, J.; Andino, R. Poliovirus requires a precise 5′ end for efficient
positive-strand RNA synthesis. J. Virol. 2000, 74, 6394-6400.
(32) Pathak, H. B.; Ghosh, S. K. B.; Roberts, A. W.; Sharma, S. D.; Yoder,
J. D.; Arnold, J. J.; Gohara, D. W.; Barton, D. J.; Paul, A. V.;
Cameron, C. E. Structure-function relationships of the RNA-
dependent RNA polymerase from poliovirus (3Dpol). A surface of
the primary oligomerization domain functions in capsid precursor
processing and VPg uridylylation. J. Biol. Chem. 2002, 277, 31551-
31562.
(33) De Clercq, E.; Balzarini, J.; Descamps, J.; Huang, G. F.; Torrence,
P. F.; Bergstrom, D. E.; Jones, A. S.; Serafinowski, P.; Verhelst, G.;
Walker, R. T. Antiviral, antimetabolic, and cytotoxic activities of
5-substituted 2′-deoxycytidines. Mol. Pharmacol. 1982, 21, 217-
223.
Z.; Andino, R.; Cameron, C. E. The broad-spectrum antiviral
ribonucleoside ribavirin is an RNA virus mutagen. Nat. Med. 2000,
6, 1375-1379.
(9) Loeb, L. A.; Essigmann, J. M.; Kazazi, F.; Zhang, J.; Rose, K. D.;
Mullins, J. I. Lethal mutagenesis of HIV with mutagenic nucleoside
analogs. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 1492-1497.
(10) Maag, D.; Castro, C.; Hong, Z.; Cameron, C. E. Hepatitis C virus
RNA-dependent RNA polymerase (NS5B) as a mediator of the
antiviral activity of ribavirin. J. Biol. Chem. 2001, 276, 46094-46098.
(11) Valko, M.; Izakovic, M.; Mazur, M.; Rhodes, C. J.; Telser, J. Role
of oxygen radicals in DNA damage and cancer incidence. Mol. Cell.
Biochem. 2004, 266, 37-56.
(12) Feig, D. I.; Sowers, L. C.; Loeb, L. A. Reverse chemical mutagenesis.
Identification of the mutagenic lesions resulting from reactive oxygen
species-mediated damage to DNA. Proc. Natl. Acad. Sci. U.S.A. 1994,
91, 6609-6613.
(13) Suen, W.; Spiro, T. G.; Sowers, L. C.; Fresco, J. R. Identification
by UV resonance Raman spectroscopy of an imino tautomer of
5-hydroxy-2′-deoxycytidine, a powerful base analog transition mu-
tagen with a much higher unfavored tautomer frequency than that of
the natural residue 2′-deoxycytidine. Proc. Natl. Acad. Sci. U.S.A.
1999, 96, 4500-4505.
(14) La Francois, C. J.; Jang, Y. H.; Cagin, T.; Goddard, W. A.; Sowers,
L. C. Conformation and proton configuration of pyrimidine deoxy-
nucleoside oxidation damage products in water. Chem. Res. Toxicol.
2000, 13, 462-470.
(15) Purmal, A. A.; Kow, Y. W.; Wallace, S. S. 5-Hydroxypyrimidine
deoxynucleoside triphosphates are more efficiently incorporated into
DNA by exonuclease-free Klenow fragment than 8-oxopurine deoxy-
nucleoside triphosphates. Nucleic Acids Res. 1994, 22, 3930-3935.
(16) Purmal, A. A.; Kow, Y. W.; Wallace, S. S. Major oxidative products
of cytosine, 5-hydroxycytosine and 5- hydroxyuracil, exhibit sequence
context-dependent mispairing in-vitro. Nucleic Acids Res. 1994, 22,
72-78.
(17) Sharova, N. P. How does a cell repair damaged DNA? Biochemistry
(Moscow) 2005, 70, 275-291.
(18) Wallace, S. S. Biological consequences of free radical-damaged DNA
bases. Free Radical Biol. Med. 2002, 33, 1-14.
(19) Wuenschell, G. E.; Valentine, M. R.; Termini, J. Incorporation of
oxidatively modified 2′-deoxynucleotide triphosphates by HIV-1 RT
on RNA and DNA templates. Chem. Res. Toxicol. 2002, 15, 654-
661.
(20) Andresen, G.; Gundersen, L. L.; Lundmark, M.; Rise, F.; Sundell,
S. Regioselective addition of Grignard reagents to a 2-oxopurinium
salt. Tetrahedron 1995, 51, 3655-3664.
(21) Niedballa, U.; Vorbruggen, H. A general synthesis of pyrimidine
nucleosides. Angew. Chem., Int. Ed. Engl. 1970, 9, 461-462.
(22) Rajeev, K. G.; Broom, A. D. 5,6-Diaminocytidine, a versatile synthon
for pyrimidine-based bicyclic nucleosides. Org. Lett. 2000, 2, 3595-
3598.
(34) Colacino, E.; Sindona, G.; Gosselin, G.; Mathe, C. Synthesis and
biological evaluation of some 5-nitro- and 5-amino derivatives of
2′-deoxycytidine, 2′,3′-dideoxyuridine, and 2′,3′-dideoxycytidine.
Nucleosides Nucleotides Nucleic Acids 2003, 22, 2013-2026.
JM060872X