Journal of the American Chemical Society
Page 6 of 7
(4)
(5)
Lawrence, S. A. Aminesꢀ: Synthesis, Properties, and
Applications; Cambridge University Press, 2004.
(23)
(24)
(25)
(26)
Mangas-Sanchez, J.; France, S. P.; Montgomery, S. L.; Aleku,
G. A.; Man, H.; Sharma, M.; Ramsden, J. I.; Grogan, G.; Turner,
N. J. Imine Reductases (IREDs). Curr. Opin. Chem. Biol. 2017,
37, 19–25.
1
2
3
4
5
6
7
8
Grigg, R.; Mitchell, T. R. B.; Sutthivaiyakit, S.; Tongpenyai, N.
Transition Metal-Catalysed N-Alkylation of Amines by
Alcohols. J. Chem. Soc. Chem. Commun. 1981, 0 (12), 611.
Aleku, G. A.; France, S. P.; Man, H.; Mangas-Sanchez, J.;
Montgomery, S. L.; Sharma, M.; Leipold, F.; Hussain, S.;
(6)
(7)
Zhang, Y.; Lim, C.-S.; Sim, D. S. B.; Pan, H.-J.; Zhao, Y.
Catalytic Enantioselective Amination of Alcohols by the Use of
Borrowing Hydrogen Methodology: Cooperative Catalysis by
Iridium and a Chiral Phosphoric Acid. Angew. Chemie Int. Ed.
2014, 53 (5), 1399–1403.
Grogan, G.; Turner, N. J.
A Reductive Aminase from
Aspergillus Oryzae. Nat. Chem. 2017, 9 (10), 961–969.
Sharma, M.; Mangas-Sanchez, J.; France, S. P.; Aleku, G. A.;
Montgomery, S. L.; Ramsden, J. I.; Turner, N. J.; Grogan, G. A
Mechanism for Reductive Amination Catalyzed by Fungal
Reductive Aminases. ACS Catal. 2018, 11534–11541.
Elangovan, S.; Neumann, J.; Sortais, J.-B.; Junge, K.; Darcel,
C.; Beller, M. Efficient and Selective N-Alkylation of Amines
with Alcohols Catalysed by Manganese Pincer Complexes. Nat.
Commun. 2016, 7, 12641.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Mutti, F. G.; Knaus, T.; Scrutton, N. S.; Breuer, M.; Turner, N.
J. Conversion of Alcohols to Enantiopure Amines through Dual-
Enzyme Hydrogen-Borrowing Cascades. Science 2015, 349
(6255), 1525–1529.
(8)
Hamid, M. H. S. A.; Slatford, P. A.; Williams, J. M. J.
Borrowing Hydrogen in the Activation of Alcohols. Adv. Synth.
Catal. 2007, 349 (10), 1555–1575.
(27)
(28)
Thompson, M. P.; Turner, N. J. Two-Enzyme Hydrogen-
Borrowing Amination of Alcohols Enabled by a Cofactor-
Switched Alcohol Dehydrogenase. ChemCatChem 2017.
(9)
Corma, A.; Navas, J.; Sabater, M. J. Advances in One-Pot
Synthesis through Borrowing Hydrogen Catalysis. Chem. Rev.
2018, 118 (4), 1410–1459.
Sattler, J. H.; Fuchs, M.; Tauber, K.; Mutti, F. G.; Faber, K.;
Pfeffer, J.; Haas, T.; Kroutil, W. Redox Self-Sufficient
Biocatalyst Network for the Amination of Primary Alcohols.
Angew. Chemie Int. Ed. 2012, 51 (36), 9156–9159.
(10)
Wu, K.; He, W.; Sun, C.; Yu, Z. Scalable Synthesis of
Secondary and Tertiary Amines by Heterogeneous Pt-Sn/γ-
Al2O3 Catalyzed N-Alkylation of Amines with Alcohols.
Tetrahedron 2016, 72 (51), 8516–8521.
(29)
Montgomery, S. L.; Mangas-Sanchez, J.; Thompson, M. P.;
Aleku, G. A.; Dominguez, B.; Turner, N. J. Direct Alkylation of
Amines with Primary and Secondary Alcohols through
Biocatalytic Hydrogen Borrowing. Angew. Chemie Int. Ed.
2017, 56 (35), 10491–10494.
(11)
Berliner, M. A.; Dubant, S. P. A.; Makowski, T.; Ng, K.; Sitter,
B.; Wager, C.; Zhang, Y. Use of an Iridium-Catalyzed Redox-
Neutral Alcohol-Amine Coupling on Kilogram Scale for the
Synthesis of a GlyT1 Inhibitor. Org. Process Res. Dev. 2011, 15
(5), 1052–1062.
(30)
(31)
(32)
Knaus, T.; Cariati, L.; Masman, M. F.; Mutti, F. G. In Vitro
Biocatalytic Pathway Design: Orthogonal Network for the
Quantitative and Stereospecific Amination of Alcohols. Org.
Biomol. Chem. 2017, 15 (39), 8313–8325.
(12)
(13)
Sorribes, I.; Junge, K.; Beller, M. Direct Catalytic N-Alkylation
of Amines with Carboxylic Acids. J. Am. Chem. Soc. 2014, 136
(40), 14314–14319..
Turner, N. J.; Heath, R. S.; Birmingham, W. R.; Thompson, M.
P.; Taglieber, A.; Daviet, L. An Engineered Alcohol Oxidase for
the Oxidation of Primary Alcohols. ChemBioChem 2018,
Sorribes, I.; Cabrero-Antonino, J. R.; Vicent, C.; Junge, K.;
Beller, M. Catalytic N-Alkylation of Amines Using Carboxylic
Acids and Molecular Hydrogen. J. Am. Chem. Soc. 2015, 137
(42), 13580–13587.
Gahloth, D.; Dunstan, M. S.; Quaglia, D.; Klumbys, E.;
Lockhart-Cairns, M. P.; Hill, A. M.; Derrington, S. R.; Scrutton,
N. S.; Turner, N. J.; Leys, D. Structures of Carboxylic Acid
Reductase Reveal Domain Dynamics Underlying Catalysis. Nat.
Chem. Biol. 2017, 13 (9), 975–981.
(14)
(15)
Cabrero-Antonino, J. R.; Adam Ortiz, R.; Beller, M. Catalytic
Reductive N-Alkylations Using CO2 and Carboxylic Acid
Derivatives: Recent Progress and Developments. Angew.
Fu, M.-C.; Shang, R.; Cheng, W.-M.; Fu, Y. Boron-Catalyzed
N-Alkylation of Amines Using Carboxylic Acids. Angew.
Chemie Int. Ed. 2015, 54 (31), 9042–9046.
(33)
(34)
France, S. P.; Hussain, S.; Hill, A. M.; Hepworth, L. J.; Howard,
R. M.; Mulholland, K. R.; Flitsch, S. L.; Turner, N. J. One-Pot
Cascade Synthesis of Mono- and Disubstituted Piperidines and
Pyrrolidines Using Carboxylic Acid Reductase (CAR), ω-
Transaminase (ω-TA), and Imine Reductase (IRED)
Biocatalysts. ACS Catal. 2016, 6 (6), 3753–3759.
(16)
(17)
(18)
Tang, S. L. Y.; Smith, R. L.; Poliakoff, M. Principles of Green
Chemistry: PRODUCTIVELY. Green Chem. 2005, 7 (11), 761.
Sheldon, R. A.; Woodley, J. M. Role of Biocatalysis in
Sustainable Chemistry. Chem. Rev. 2018, 118 (2), 801–838.
Hepworth, L. J.; France, S. P.; Hussain, S.; Both, P.; Turner, N.
J.; Flitsch, S. L. Enzyme Cascades in Whole Cells for the
Synthesis of Chiral Cyclic Amines. ACS Catal. 2017, 7 (4),
2920–2925.
Savile, C. K.; Janey, J. M.; Mundorff, E. C.; Moore, J. C.; Tam,
S.; Jarvis, W. R.; Colbeck, J. C.; Krebber, A.; Fleitz, F. J.;
Brands, J.; Devine, P. N.; Huisman G. W.; Hughes G. J.
Biocatalytic Asymmetric Synthesis of Chiral Amines from
Ketones Applied to Sitagliptin Manufacture. Science (80-. ).
2010, 329 (5989).
(35)
(36)
Winkler, M. Carboxylic Acid Reductase Enzymes (CARs).
Curr. Opin. Chem. Biol. 2018, 43, 23–29.
Kramer, L.; Hankore, E. D.; Liu, Y.; Liu, K.; Jimenez, E.; Guo,
J.; Niu, W. Characterization of Carboxylic Acid Reductases for
Biocatalytic Synthesis of Industrial Chemicals. ChemBioChem
2018, 19 (13), 1452–1460.
(19)
(20)
Parmeggiani, F.; Lovelock, S. L.; Weise, N. J.; Ahmed, S. T.;
Turner, N. J. Synthesis of D - and L -Phenylalanine Derivatives
by Phenylalanine Ammonia Lyases: A Multienzymatic Cascade
Process. Angew. Chemie Int. Ed. 2015, 54 (15), 4608–4611.
(37)
(38)
Resnick, S. M.; Zehnder, A. J. In Vitro ATP Regeneration from
Ghislieri, D.; Green, A. P.; Pontini, M.; Willies, S. C.; Rowles,
I.; Frank, A.; Grogan, G.; Turner, N. J. Engineering an
Enantioselective Amine Oxidase for the Synthesis of
Pharmaceutical Building Blocks and Alkaloid Natural Products.
J. Am. Chem. Soc. 2013, 135 (29), 10863–10869.
Polyphosphate
and
AMP
by
polyphosphate:AMP
Phosphotransferase and Adenylate Kinase from Acinetobacter
Johnsonii 210A. Appl. Environ. Microbiol. 2000, 66 (5), 2045–
2051.
Roiban, G.-D.; Kern, M.; Liu, Z.; Hyslop, J.; Tey, P. L.; Levine,
M. S.; Jordan, L. S.; Brown, K. K.; Hadi, T.; Ihnken, L. A. F.;
Brown, M. J. B. Efficient Biocatalytic Reductive Aminations by
Extending the Imine Reductase Toolbox. ChemCatChem 2017,
9 (24), 4475–4479.
(21)
(22)
Heath, R. S.; Pontini, M.; Bechi, B.; Turner, N. J. Development
of an
R -Selective Amine Oxidase with Broad Substrate
Specificity and High Enantioselectivity. ChemCatChem 2014, 6
(4), 996–1002.
Heath, R. S.; Pontini, M.; Hussain, S.; Turner, N. J. Combined
Imine Reductase and Amine Oxidase Catalyzed Deracemization
of Nitrogen Heterocycles. ChemCatChem 2016, 8 (1), 117–120.
ACS Paragon Plus Environment