Y. Liu et al. / Bioorg. Med. Chem. Lett. 17 (2007) 156–160
Table 2. Antitumor activity of the synthetic compounds against HeLa
tumor cell line
159
References and notes
1. Hostettmann, K.; Marston, A. Saponins; Cambridge
University Press: Cambridge, 1995; pp. 288–304.
2. Lasztity, R.; Hidvegi, M.; Bata, A. Food Rev. Int. 1998, 14,
371.
Compound
Inhibition rate at different
concentration (%)
IC50(lM)
10ꢁ5 M 10ꢁ6 M 10ꢁ7
M
10ꢁ8 M
1
22.34
18.47
62.02
9.71
17.29
11.03
4.34
13.80
12.05
1.64
9.49
8.33
0.26
3.25
6.36
0.98
0.87
0.46
3.42
7.95
1.35
0.16
7.19
13.64
0.68
17.47
15.84
6.00
>10
>10
4.25
>10
>10
>10
>10
>10
>10
>10
8.36
>10
>10
>10
>10
>10
>10
>10
3. For some examples reported, see (a) Hou, S.; Xu, P.;
Zhou, L.; Yu, D.; Lei, P. Bioorg. Med. Chem. Lett. 2006,
16, 2454; Wang, P.; Li, C.; Zang, J.; Song, N.; Zhang, X.;
Li, Y. Carbohydr. Res. 2005, 340, 2086; Zhang, Y.; Li, Y.;
Zhu, S.; Guan, H.; Lin, F.; Yu, B. Carbohydr. Res. 2004,
339, 1753; Suhr, R.; Lahmann, M.; Oscarson, S.; Thiem, J.
Eur. J. Org. Chem. 2003, 20, 4003.
4. Kanie, O.; Barresi, F.; Ding, Y.; Labbe, J.; Otter, A.;
Forsberg, L. S.; Ernst, B.; Hindsgaul, O. Angew. Chem.,
Int. Ed. Engl. 1995, 34, 2720.
5. Ding, Y.; Kanie, O.; Labbe, J.; Palcic, M. M.; Ernst, B.;
Hindsgaul, O. Adv. Exp. Med. Biol. 1995, 376, 261;
Ding, Y.; Labbe, J.; Kanie, O.; Hindsgdul, O. Bioorg.
Med. Chem. 1996, 4, 683; Boons, G. J.; Heskamp, B.;
Hour, F. Angew. Chem., Int. Ed. 1996, 35, 2845; Izumi,
M.; Ichikawa, Y. Tetrahedron Lett. 1998, 39, 2079; Yu,
B.; Li, B.; Xing, G.; Hui, Y. J. Comb. Chem. 2001, 3,
404.
5
7a
7b
7c
7d
7e
7f
7g
7h
7i
4.79
9.25
3.84
7.51
10.33
11.77
4.36
2.84
3.67
1.79
1.05
3.46
2.31
9.94
1.78
7.16
10.48
24.78
60.13
15.13
26.18
28.47
30.95
30.86
28.14
17.59
14.48
6.34
1.67
12.76
6.93
1.66
7j
7k
7l
21.19
20.70
10.64
22.97
26.30
16.27
14.28
20.06
5.45
7m
7n
7o
7p
19.26
22.29
14.23
6. Fu, X.; Albermann, C.; Zhang, C.; Thorson, J. S. Org.
Lett. 2004, 7, 1513; Yang, J.; Fu, X.; Jia, Q.; Shen, J.;
Biggins, J. B.; Jiang, J.; Zhao, J.; Schmidt, J. J.; Wang, P.
G.; Thorson, J. S. Org. Lett. 2003, 5, 2223.
7. The mixture generated via random glycosylation usually
composed of a series of isomeric compounds, which made
the isolation of individual chemicals extremely difficult.
Moreover, the deconvolution of the library was also a
complicated course if the active compounds needed to be
identified.
8. Shoda, J.; Axelson, M.; Sjovall, J. Steroids 1993, 58, 119;
Javitt, N. B.; Kok, E.; Lloyd, J.; Benscath, A.; Field, F. H.
Biomed. Mass Spectrom. 1982, 9, 61; Mui, M. M.; Kamat,
S. Y.; Elliott, W. H. Steroids 1974, 24, 239; Noll, B. W.;
Doisy, E. A.; Elliott, W. H. J. Lipid Res. 1973, 14, 391.
9. Alessandrini, L.; Ciuffreda, P.; Santaniello, E.; Terraneo,
G. Steroids 2004, 69, 789; Kessar, S. V.; Gupta, Y. P.;
Mahajan, R. K.; Joshi, G. S.; Rampal, A. L. Tetrahedron
1968, 24, 899.
generated through total six manipulations, whose struc-
tures are shown in Table 1.
The antitumor activity in vitro of these synthetic sapo-
nins against HeLa tumor cells was investigated by the
standard MTT assay. As shown in Table 2, only sapo-
nins 7a and 7i presented definite inhibitions against
HeLa cells below the concentration of 10 lM. However,
other 14 saponins, the ester form of kryptogenin 5, and
the aglycone 1 itself showed relatively lower effect at the
same condition. This result indicates that some sugar
moieties are important for inducing the antitumor activ-
ity of cholestanol saponins. Nevertheless, there is still a
large amount of work to do for probing such effective
sugar residues.
10. Cheng, M. S.; Wang, Q. L.; Tian, Q.; Song, H. Y.; Liu, Y.
X.; Li, Q.; Xu, X.; Miao, H. D.; Yao, X. S.; Yang, Z. J.
Org. Chem. 2003, 68, 3658.
In summary, a library of 16 novel bisdesmosidic steroi-
dal saponins was built for the evaluation of antitumor
activity. Applied to random glycosylation strategy, two
sugar donors and kryptogenin successfully generated
all four possible bisdesmosidic glycosides in a simpler
and faster manner. This idea should be useful for the
facile preparation of other multi-O-glycosyl saponins li-
brary. Since biological ligands are generally two to four
sugars in size, oligosaccharide donors need to be intro-
duced to steroidal aglycone randomly to prepare a
potentially useful library for bioactivity test and struc-
ture–activity relationship (SAR) research. Further stud-
ies in this area are in progress and will be reported in due
courses.
11. Petroleum ether–EtOAc (6:1, v/v) was used to collect the
fractions including all the possible bisdesmosidic glyco-
sides. Afterwards minor monodesmosidic saponins were
eluted by petroleum ether–EtOAc (3:1, v/v), followed by
the fraction of starting kryptogenin with a recovery of
10%.
12. A JAI-LC 9103 recycling preparative HPLC equipped
with an ODS reverse-phase column was applied to isolate
the components with MeOH–H2O (80:20, v/v) at a flow
rate of 9.0 ml/min. The relative abundance ratio of each
component was 27:23:18:31 (7f:7h:7n:7p).
13. NMR spectral data were listed as following: for 7h: 1H
NMR (600 MHz, pyridine-d5, ppm): d 5.28 (br s, 1H,
H-6), 5.06 (d, J = 7.7 Hz, 1H, H-10), 4.72 (d, J = 7.8 Hz,
1H, H-100), 4.59–4.57 (d, J = 11.5, 1H, CH2-60-1), 4.44–
4.42 (m, 1H, CH2-60-2), 4.38–4.35 (dd, J = 11.2, 5.2, 1H,
CH2-500-1), 4.31–4.29 (m, 2H, H-30, H-400), 4.24–4.23 (m,
1H, H-40), 4.18–4.15 (t, J = 8.6, 1H, H-300), 4.07 (m, 1H,
H-20), 4.02–4.00 (m, 2H, H-3, H-50), 3.96–3.93 (m, 2H, H-
200, CH2-26-1), 3.74–3.70 (t, J = 10.5, CH2-500-2), 3.65–3.63
(dd, J = 14.9, 4.0, CH2-26-2), 2.92–2.91 (m, 1H, H-20),
2.79–2.77 (m, 3H, H-17, CH2-4), 2.68–2.66 (m, 1H, CH2-
15-1), 2.45 (m, 1H, CH2-23-1), 2.14–2.12 (m, 1H, CH2-15-
Acknowledgment
The authors thank National Natural Science Founda-
tion of China (No. 20472054) for financial support of
this research.