Scheme 2. Strategy to Access Pyrimido[5,4-c]isoquinolines
Scheme 3. Sequential Selective Oxidation of
Pyrimido[4,5-b][1,4]benzothiazepines 2 by m-CPBA
rimidothiazepines.4 It is recognized that the scope of this
sulfur monoxide extrusion reaction was not fully explored,
especially with regard to a one-pot variation of the reaction.
Sulfur extrusion reactions are often reported for organic
sulfides, sulfoxides, and sulfones, and only a few complex
molecules were prepared through their applications.5 On the
other hand, direct extrusions of sulfur monoxide6 are less
common, compared to the well-documented extrusion reac-
tions of sulfide and sulfur dioxide.7 Herein, we report the
details of our investigation on the scope of the nucleophilic
aromatic substitution-sulfur monoxide extrusion approach
to pyrimido[5,4-c]isoquinolines outlined in Scheme 2.
The existence of two sulfur atoms in compounds 2 presents
a challenge for selective or sequential oxidation of the
4-sulfide group and the ring sulfur atom. Previously, we
demonstrated that the arylsulfide group in 4-phenylthiopy-
rimido[4,5-b][1,4]benzothiazepine 2 could be selectively
oxidized to its corresponding sulfoxide 6 (Scheme 3) in good
yield.2e To explore the feasibility of sequential selective
oxidation, various oxidation conditions were applied to 2.1
(R1 ) R2 ) H) as outlined in Scheme 3. Compound 2.1
could be selectively converted to 6, 7, 8, 3.1, and 9 by
controlling the stoichiometry of m-CPBA and the reaction
temperature. Treatment of compound 2.1 with 1.2 equiv of
m-CPBA at 0 °C provided the side chain sulfoxide 6 in 77%
yield. Increasing m-CPBA to 2.2 equiv and elevating the
reaction temperature to ambient gave a mixture of two
compounds (7 and 8) which could not be separated via flash
column chromatography. Further increase of m-CPBA to 3.6
equiv at room temperature resulted in sulfone-sulfoxide 3.1
in 60% isolated yield. Sulfone-sulfone product 9 could be
(3) (a) Ghorai, B. K.; Jiang, D.; Herndon, J. W. Org. Lett. 2003, 5, 4261-
4263. (b) Nair, V.; Sreekanth, A. R.; Abhilash, N.; Bhadbhade, M. M.;
Gonnade, R. C. Org. Lett. 2002, 4, 3575-3577. (c) Orito, K.; Harada, R.;
Uchiito, S.; Tokuda, M. Org. Lett. 2000, 2, 1799-1801. (d) Rodrigues, J.
A. R.; Abramovitch, R. A.; de Sousa, J. D. F.; Leiva, G. C. J. Org. Chem.
2004, 69, 2920-2928. (e) Kiselyov, A. S. Tetrahedron 2006, 62, 543-
548. (f) Takechi, H.; Takahashi, H.; Machida, M. J. Heterocycl. Chem.
2005, 42, 201-207. (g) Li, W. Z.; Yang, H. Tetrahedron 2005, 61, 5037-
5042. (h) Chrzanowska, M.; Rozwadowska, M. D. Chem. ReV. 2004, 104,
3341-3370. (i) Duncton, M. A. J.; Smith, L. M., II; Burdzovic-Wizeman,
S.; Burns, A.; Liu, H.; Mao, Y.; Wong, W. C.; Kiselyov, A. S. J. Org.
Chem. 2005, 70, 9629-9631. (j) Cesar, J. J. Comb. Chem. 2005, 7, 517-
519. (k) Schell, P.; Richards, M. P.; Hanson, K.; Berk, S. C.; Makara, G.
M. J. Comb. Chem. 2005, 7, 96-98. (l) Wojtowicz-Rajchel, H.; Migas,
M.; Koroniak, H. J. Org. Chem. 2006, 71, 8842-8846. (m) Nie, A.; Wang,
J.; Huang, Z. J. Comb. Chem. 2006, 8, 646-648. (n) Antonini, I.; Polucci,
P.; Magnano, A.; Sparapani, S.; Martelli, S. J. Med. Chem. 2004, 47, 5244-
5250. (o) Mitsumoto, Y.; Nitta, M. J. Org. Chem. 2004, 69, 1256-1261.
(4) (a) Safonova, T. S.; Nemeryuk, M. P.; Grineva, N. A.; Keremov, A.
F.; Anisimova, O. S.; Solov’eva, N. P. Chem. Heterocycl. Compd. (Engl.
Transl.) 2004, 40, 1609-1617. (b) Nemeryuk, M. P.; Grineva, N. A.;
Safonova, T. S. Patent U.S.S.R. 1983, 725427.
(5) (a) von Roth, M.; Dubs, P.; Gotschi, E.; Eschenmoser, A. HelV. Chim.
Acta 1971, 54, 710-734. (b) Fujihara, H.; Chiu, J.; Furukawa, N.
Tetrahedron Lett. 1989, 30, 7441-7444. (c) Leonard, J.; Hague, A. B.;
Jones, M. F. Tetrahedron Lett. 1997, 38, 3071-3074. (d) Ashram, M.;
Miller, D. O.; Bridson, J. N.; Georghiou, P. E. J. Org. Chem. 1997, 62,
6476-6484. (e) Sponholtz, W. R., III; Trujillo, H. A.; Gribble, G. W.
Tetrahedron Lett. 2000, 41, 1687-1690. (f) Rigby, J. H.; Warshakoon, N.
C. Tetrahedron Lett. 1997, 38, 2049-2052. (g) Guziec, F. S.; Sanfilippo,
L. J. Tetrahedron 1988, 44, 6241-6285.
(6) (a) Gajurel, C. L.; Vaidya, S. R. Indian J. Chem., Sect. B 1980, 19,
911-912. (b) Gajurel, C. L.; Vaidya, S. R.; Shrestha, K. B. Indian J. Chem.,
Sect. B 1979, 18, 361-362. (c) Chow, Y.; Tam, J. N. S.; Blier, J. E.; Szmant,
H. H. J. Chem. Soc., Chem. Commun. 1970, 23, 1604-1605. (d) Axel, C.;
Pierre, G.; Cristian, S. Phosphorus, Sulfur Silicon, Relat. Elem. 1997, 122,
59-70. (e) Fodor, L.; MacLean, D. B. Can. J. Chem. 1987, 65, 18-20. (f)
London, J. D.; Young, L. B. J. Chem. Soc. 1963, 5496-5502. (g) Bradsher,
C. K.; McDonald, J. W. J. Org. Chem. 1962, 27, 4475-4478. (h) Bradsher,
C. K.; McDonald, J. W. J. Org. Chem. 1962, 27, 4478-4481. (i) Bradsher,
C. K.; McDonald, J. W. J. Org. Chem. 1962, 27, 4481-4485.
(7) (a) Bilokin, Y. V.; Melman, A.; Niddam, V.; Benhamu´, B.; Bachi,
M. D. Tetrahedron 2000, 56, 3425-3437. (b) Leonard, J.; Hague, A. B.;
Jones, M. F. Tetrahedron Lett. 1997, 38, 3071-3074. (c) Pfeiffer, W.; Dilk,
E.; Rossberg, H.; Langer, P. Synlett 2003, 15, 2392-2394. (d) Konstanti-
nova, L. S.; Obruchnikova, N. V.; Rakitin, O. A.; Rees, C. W.; Torroba, T.
J. Chem. Soc., Perkin Trans. 1 2000, 3421-3427. (e) Marques, M. M. B.;
Santos, M. M. M.; Lobo, A. M.; Prabhakar, S. Tetrahedron Lett. 2000, 41,
9835-9838. (f) Yang, F.-M.; Lin, S.-T. J. Org. Chem. 1997, 62, 2727-
2731. (g) Jarrett, A. D.; Loudon, J. D. J. Chem. Soc. 1957, 3818-3823.
(h) Galt, R. H. B.; Loudon, J. D.; Sloan, A. D. B. J. Chem. Soc. 1958,
1588-1592. (i) Galt, R. H. B.; Loudon, J. D. J. Chem. Soc. 1959, 885-
889. (j) Masquelin, T.; Obrecht, D. Tetrahedron 1997, 53, 641-646. (k)
Cabarrocas, G.; Rafel, S.; Ventura, M.; Villalgordo, J. M. Synlett 2000, 5,
595-598. (l) Cabarrocas, G.; Ventura, M.; Maestro, M.; Mah´ıa, J.;
Villalgordo, J. M. Tetrahedron: Asymmetry 2001, 12, 1851-1863.
572
Org. Lett., Vol. 9, No. 4, 2007