SCHEME 1. Esterification of Dicarboxylic Acids Using
Alkenyl Bromide or Alcohol
New Approach to the Synthesis of Macrocyclic
Tetralactones via Ring-Closing Metathesis Using
Grubbs’ First-Generation Catalyst
Sengodagounder Muthusamy,*,†
Boopathy Gnanaprakasam,† and Eringathodi Suresh‡
School of Chemistry, Bharathidasan UniVersity, Tiruchirappalli,
Tamilnadu 620 024, India, and Central Salt & Marine
Chemicals Research Institute (CSIR), BhaVnagar,
Gujarat 364 002, India
as well as large rings from acyclic diene precursors. Many
macrolides have been ingeniously approached by RCM meth-
ods.3 Synthesis4 and studies5 of the macrocyclic dilactones are
impressive in organic chemistry due to their biological proper-
ties, complex formation, ion carriers, and application in the
perfume industry. Even though literature methods provide a
mixture of dilactones and tetralactones, the reactions give low
yields and require drastic conditions. Recently, we have
reported6 the synthesis of macrocyclic tetralactones via DCC/
DMAP cyclization of dicarboxylic acids. Since there has been
no other literature report toward the synthesis of macrocyclic
tetralactones, we herein report a successful method for macro-
cyclic tetralactones with different ring sizes via RCM reaction.
With the objective to develop a new alternative efficient
method for macrocyclic tetralactones, the required dicarboxylic
acids 1 were assembled by the recently reported6 method. The
dicarboxylic acids 1 having different spacers were alkylated via
two different methods. Method 1 involves the reaction of
dicarboxylic acid 1, alkenyl bromide, K2CO3, and a catalytic
amount of tetrabutylammonium iodide (TBAI) at room tem-
perature. The second method involves the reaction6 of dicar-
boxylic acid 1 and alkenol in the presence of DCC/DMAP.
The dialkylation reaction of dicarboxylic acid 1a and an
excess amount of allyl bromide was carried out on the basis of
ReceiVed October 3, 2006
A facile and efficient route to synthesize macrocyclic
tetralactones with different ring sizes having a wide variety
of spacers is described. The application of ring-closing
metathesis for the synthesis of macrocyclic tetralactones is
demonstrated with many examples in excellent yield. The
representative structure of macrocyclic tetralactones is
characterized by X-ray crystallography.
Ring-closing metathesis (RCM) reactions have become one
of the most versatile and efficient methods for constructing many
carbo- and heterocyclic compounds.1 They have been exten-
sively used as a key step in a number of natural product
syntheses to install a cyclic structure.2 Olefin metathesis provides
an efficient methodology for CdC bond formation and has
received a great deal of attention for the synthesis of medium
(3) (a) Blom, P.; Ruttens, B.; Hoof, S. V.; Hubrecht, I.; Eyken, J. V. D.
J. Org. Chem. 2005, 70, 10109. (b) Cao, Y.; Wang, L.; Bolte, M.; Vysotsky,
M. O.; Bo¨hmer, V. J. Chem. Soc., Chem. Commun. 2005, 3132. (c) Fu¨rstner,
A.; Mu¨ller, C. J. Chem. Soc., Chem. Commun. 2005, 5583. (d) Oishi, S.;
Shi, Z, D.; Worthy, K. M.; Bindu, L. K.; Fisher, R. J.; Burke, T. R.
ChemBioChem 2005, 6, 668. (e) Appukkuttan, P.; Dehaen, W.; Eyken,
E. V. D. Org. Lett. 2005, 7, 2723. (f) Kim, Y. J.; Lee, D. Org. Lett. 2004,
6, 4351. (g) Gao, Y.; Wei, C. -Q.; Burke, T. R., Jr. Org. Lett. 2001, 3,
1617. (h) Do¨rner, S.; Westermann, B. J. Chem. Soc., Chem. Commun. 2005,
2852. (i) Fu¨rstner, A.; Thiel, O. R.; Lehmann, C. W. Organometallics 2002,
21, 331. (j) Fu¨rstner, A.; Langemann, K. Synthesis 1997, 792.
(4) (a) Piepers, O.; Kellogg, R. M. J. Chem. Soc., Chem. Commun. 1978,
383. (b) Asay, R. E.; Bradshaw, J. S.; Nielsen, S. F.; Thompson, M. D.;
Snow, J. W.; Masihdas, D. R. K.; Izatt, R. M.; Christensen, J. J.
J. Heterocycl. Chem. 1977, 14, 85. (c) Drewes, S. E.; Riphagen, B. G.
J. Chem. Soc., Perkin Trans. 1 1974, 323. (d) Samat, A.; Bibout, M. E.
M.; Elguero, J. J. Chem. Soc., Perkin Trans. 1 1985, 1717. (e) Zhou, Z.;
Schuster, D. I.; Wilson, S. R. J. Org. Chem. 2003, 68, 7612. (f) Singh, H.;
Kumar, M.; Singh, P. J. Chem. Res., Miniprint 1989, 4, 675. (g) Takahashi,
S.; Souma, K.; Hashimoto, R.; Koshino, H.; Nakata, T. J. Org. Chem. 2004,
69, 4509. (h) Nakamura, T.; Matsuyama, H.; Kamigata, N.; Iyoda, M.
J. Org. Chem. 1992, 57, 3783. (i) Bosch, M. P.; Guerrero, A. Synlett 2005,
2611.
* To whom correspondence should be addressed. Fax: 91-431-2407053.
† Bharathidasan University.
‡ Central Salt & Marine Chemicals Research Institute (CSIR).
(1) (a) Handbook of metathesis; Grubbs, R. H., Ed.; Wiley-VCH:
Weinheim, 2003; Vol. 2. (b) Grubbs, R. H. Tetrahedron 2004, 60, 7117.
(c) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413. (d) Trnka,
T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18. (e) Trost, B. M.;
Frederiksen, M. U.; Rudd, M. T. Angew. Chem., Int. Ed. 2005, 44, 6630.
(f) Arjona, O.; Csa´ky¨, A. G.; Plumet, J. Eur. J. Org. Chem. 2003, 611. (g)
Poulsen, C. S.; Madsen, R. Synthesis 2003, 1. (h) Walters, M. A. In Progress
in Heterocyclic Chemistry; Gribble, G. W., Joule, J. A., Eds.; Pergamon:
Amsterdam, 2003; Vol. 15, pp 1-36. (i) Nakamura, I.; Yamamoto, Y. Chem.
ReV. 2004, 104, 2127. (j) Deiters, A.; Martin, S. F. Chem. ReV. 2004, 104,
2199. (k) Kotha, S.; Sreenivasachary, N. Indian J. Chem. 2001, 40B, 763.
(l) Schmidt, B.; Hermanns, J. Curr. Org. Chem. 2006, 10, 1363.
(2) (a) Mehta, G.; Singh, S. R. Angew. Chem., Int. Ed. 2006, 45, 953.
(b) Mehta, G.; Lakshiminath, S. Tetrahedron Lett. 2006, 47, 327. (c) Briggs,
T. F.; Dudley, G. B. Tetrahedron Lett. 2005, 46, 7793. (d) Bennasar,
M.-L.; Zulaica, E.; Alonso, S. Tetrahedron Lett. 2005, 46, 7881. (e) Chiang,
G. C. H.; Bond, A. D.; Ayscough, A.; Pain, G.; Ducki, S.; Holmes, A. B.
J. Chem. Soc., Chem. Commun. 2005, 1860. (f) Tae, J.; Yang, Y-K. Org.
Lett. 2003, 5, 741. (g) Kotha, S.; Mandal, K.; Arora, K. K.; Pedireddi, V.
R. AdV. Syn. Catal. 2005, 347, 1215.
(5) (a) Bradshaw, J. S.; Maas, G. E.; Izatt, R. M.; Christensen, J. J. Chem.
ReV. 1979, 79, 37. (b) Bogdanova, A.; Perkovic, M. W.; Popik, V. V.
J. Org. Chem. 2005, 70, 9867. (c) Griesbeck, A. G.; Henz, A.; Hirt, J.
Synthesis 1996, 1261. (d) Masamune, S.; Bates, S. G.; Corcoran, J. W.
Angew. Chem., Int. Ed. Engl. 1977, 16, 585. (f) Paterson, I.; Mansuri,
M. M. Tetrahedron 1985, 41, 3569.
(6) Muthusany, S.; Gnanaprakasam, B.; Suresh, E. Org. Lett. 2006, 8,
1913.
10.1021/jo062043p CCC: $37.00 © 2007 American Chemical Society
Published on Web 01/25/2007
J. Org. Chem. 2007, 72, 1495-1498
1495