10.1002/chem.202100672
Chemistry - A European Journal
FULL PAPER
Faeh, F. Diederich, Science 2007, 317, 1881-1886; e) T. Liang, C. N.
Neumann, T. Ritter, Angew. Chem. Int. Ed. 2013, 52, 8214-8264;
Angew. Chem. 2013, 125, 8372-8423; f) D. O’Hagan, H. Deng, Chem.
Rev. 2015, 115, 634-649.
to proceed the cyclization reaction and not suitable as a catalyst for
our reaction system.
[18] a) K. Komeyama, K. Takahashi, K. Takaki, Org. Lett. 2008, 10, 5119-
5122; b) Y. Soltani, L. C. Wilkins, R. L. Melen, Angew. Chem. Int. Ed.
2017, 56, 11995-11999; Angew. Chem. 2017, 129, 12157-12161.
[19] a) A. Kondoh, K. Koda, M. Terada, Org. Lett. 2019, 21, 2277-2280; b)
A. E. Feiring, J. Org. Chem. 1980, 45, 1962-1964; c) J. Ichikawa, Y.
Wada, M. Fujiwara, K. Sakoda, Synthesis 2002, 1917-1936; d) T.
Fujita, K. Sakoda, M. Ikeda, M. Hattori, J. Ichikawa, Synlett 2013, 24,
57-60; e) K. Burger, B. Helmreich, J. Chem. Soc., Chem. Commun.
1992, 348-349; f) J. Ichikawa, K. Sakoda, H. Moriyama, Y. Wada,
Synthesis 2006, 1590-1598; g) J. Ichikawa, Y. Wada, T. Okauchi, T.
Minami, Chem. Commun. 1997, 6, 1537-1538; h) J. Ichikawa, K.
Sakoda, Y. Wada, Chem. Lett. 2002, 3, 282-283; i) A. Saito, M. Okada,
Y. Nakamura, O. Kitagawa, H. Horikawa, T. Taguchi, J. Fluor. Chem.
2003, 123, 75-80; j) J. Yang, A. Mao, Z. Yue, W. Zhu, X. Luo, C. Zhu,
Y. Xiao, J. Zhang. Chem. Commun. 2015, 51, 8326-8329; k) K. Burger,
B. Helmreich, J. Chem. Soc., Chem. Commun. 1992, 348-349.
[20] InI3 could be generated in the presence of InCl3 and ZnI2 and can act
as a gem-difluoroalkene activator (See Supporting Information).
[21] The reaction mixture was monitored by 1H NMR after completing the
reaction in a sealed NMR tube to observe the quantitative generation
of MeI without MeF.
[3]
For examples of synthesis of fluorinated heterocycles, see: a) A. W.
McCarter, M. Sommer, J. M. Percy, C. Jamieson, A. R. Kennedy, D. J.
Hirst, J. Org. Chem. 2018, 83, 8888-8905; b) X. Yuan, J. -F. Yao, Z. -Y.
Tang, Org. Lett. 2017, 19, 1410-1413; c) J. -Q. Qu, S. -S. Zhang, H.
Gao, Z. Qi, C. -J. Zhou, W. -W. Ji, Y. Liu, Y. Chen, Q. Li, X. Li, H.
Wang, J. Am. Chem. Soc. 2017, 139, 3537-3545; d) T. Fujimoto, T.
Ritter, Org. Lett. 2015, 17, 544-547.
[4]
[5]
For selected reviews, see: a) S. Pal, V. Chatare, M. Pal, Curr. Org.
Chem. 2011, 15, 782-800; b) P. Saikia, S. Gogoi, Adv. Synth. Catal.
2018, 360, 2063-2075; c) G. Kuang, G. Liu, X. Zhang, N. Lu, Y. Peng,
Q. Xiao, Y. Zhou, Synthesis, 2020, 52, 993-1006.
a) Y. V. Zonov, V. M. Karpov, V. E. Platonov, J. Fluor. Chem. 2014,
162, 71-77; b) Y. V. Zonov, T. V. Mezhenkova, V. M. Karpov, V. E.
Platonov, Russ. J. Org. Chem. 2008, 44, 1652-1656; c) Ya. V. Zonov,
V. M. Karpov, T. V. Mezhenkova, Russ. J. Org. Chem. 2019, 55,
1103-1111; d) H. Gao, S. Lin, S. Zhang, W. Chem, X. Liu, G. Yang, R.
A. Lerner, H. Xu, Z. Zhou, W. Yi, Angew. Chem. Int. Ed. 2021, 60,
1959-1966; Angew. Chem. 2021, 133, 1987-1994.
[6]
[7]
a) G. Cerichelli, M E. Crestoni, S. Fornarini, Gazz. Chim. Ital. 1990,
120, 749-755; b) E. Dvornikova, M. Bechcicka, K. Kamien´ska-Trela, A.
Kro o´wczyn´ski, J. Fluor. Chem, 2003, 124, 159-168.
[22] a) J. Ichikawa, M. Kaneko, M. Yokota, M. Itonaga, T. Yokoyama, Org.
Lett. 2006, 8, 3167-3170; b) W. Nakanishi, T. Matsuno, J. Ichikawa. H.
Isobe, Angew. Chem. Int. Ed. 2011, 50, 6048-6051; Angew. Chem.
2011, 123, 6172-6175; c) N. Suzuki, T. Fujita, J. Ichikawa, Org. Lett.
2015, 17, 4984-4987.
a) T. Rueckle, X. Jiang, P. Gaillard, D. Church, T. Vallotton, US Pat.
Appl. US20060122176 A1, 2006; b) A.D. Borthwick, R.J. Hately,
D.M.B. Hickey, J. Liddle, D.G.H. Livermore, A.M. Mason, N.D. Miller, F.
Nerozzi, S.L. Sollis, A.K. Szardengings, P.G. Wyatt, US Pat. Appl.
US20050148572 A1, 2005.
[8]
[9]
S. Martínez-Monteroa, S. Fernándeza, Y. S. Sanghvic, E. A.
Theodorakisb, M. A. Detoriod, T. R. Mcbrayere, T. Whitakere, R. F.
Schinazid, V. Gotor and M. Ferrero, Bioorg. Med. Chem. 2012, 20,
6885–6893.
a) M. Badland, D. Compere, K. Courte, A. -C. Dublanchet, S. Blais, A.
Manage, G. Peron, R. Wrigglesworth, Bioorg. Med. Chem. Lett. 2011,
21, 528–530; b) D. Heeran, G. Sandford, Tetrahedron 2016, 72, 2456-
2463; c) M. Wang, X. Liu, L. Zhou, J. Zhu, X. Sun, Org. Biomol. Chem.
2015, 13, 3190-3193.
[10] T. Shamma, H. Buchholz, G. K. S. Prakash, G. A. Olah, Isr. J. Chem.
1999, 39, 207-210.
[11] a) X. Zhang, S. Cao, Tetrahedron Lett. 2017, 58, 375-392; b) S. Koley,
R. A. Altman, Isr. J. Chem. 2020, 60, 313-339.
[12] For selected review and paper, see a) T. Fujita, K. Fuchibe, J.
Ichikawa. Angew. Chem. Int. Ed. 2019, 58, 390-402; Angew. Chem.
2019, 131, 396-408; b) P. Tian, C. Feng, T. -P. Loh, Nat. Commun.
2015, 6, 7472.
[13] a) Y. Kita, T. Yata, Y. Nishimoto, K. Chiba, M. Yasuda, Chem. Sci.
2018, 9, 6041-6052; b) T. Yata, Y. Kita, Y. Nishimoto, M. Yasuda, J.
Org. Chem. 2019, 84, 14330-14341.
[14] We developed the carboindation of alkenes using indium salts and
organosilicon nucleophiles via the activation of alkene moiety by
indium salts; a) Y. Nishimoto, H. Ueda, Y. Inamoto, M. Yasuda, A.
Baba, Org. Lett. 2010, 12, 3390-3393; b) Y. Nishimoto, T. Nishimura,
M. Yasuda, Chem. Eur. J. 2015, 21, 18301-18308.
[15] For selectid review, see a) T. Stahl, H. F. T. Klare, M. Oestreich, ACS
Catal. 2013, 3, 1578-1587; b) G. Coates, F. Rekhroukh, M. R.
Crimmin. Synlett 2019, 30, 2233-2246.
[16] Lu et al. reported the hydrodefluorination of aryl C–F bonds using a
bimetallic Rhodium-Indium catalyst: J. T. Moore, C. C. Lu, J. Am.
Chem. Soc. 2020, 142, 11641-11646.
[17] A certain amount of precipitate was observed in reaction mixture after
completing reaction. As the indium salt is fluorinated via β-fluorine
elimination, the indium salt become less soluble in toluene, weakening
the catalytic activity. In addition, DFT calculation were performed to
estimate the interaction between gem-difluorostyrene and InF3, but the
InF3 complex was not found, whereas InI3-complex was obtained.
Thus, we conclude that InF3 does not have a π-Lewis acidity enough
8
This article is protected by copyright. All rights reserved.