Organic Letters
Letter
Science and Opportunities. Angew. Chem., Int. Ed. 2002, 41, 2008−
2022. (d) Ikariya, T.; Murata, K.; Noyori, R. Bifunctional Transition
Metal-Based Molecular Catalysts for Asymmetric Syntheses. Org.
Biomol. Chem. 2006, 4, 393−406.
ACKNOWLEDGMENTS
■
This work was supported by JSPS KAKENHI Grant Number
JP17H04877 in Young Scientists (A) to T.I., and by JSPS
KAKENHI Grant Number JP15H05801 in Precisely Designed
Catalysts with Customized Scaffolding and JSPS KAKENHI
Grant Number JP18H03906 in Grant-in-Aid for Scientific
Research (A) to M.S. D.Z. thanks JSPS for a scholarship
support.
(5) For alcohol as a hydrogen donor, see: (a) Sasson, Y.; Blum, J.
Dichlorotris(triphenylphosphine)ruthenium-Catalyzed Hydrogen
Transfer from Alcohols to Saturated and α,β-Unsaturated Ketones.
J. Org. Chem. 1975, 40, 1887−1896. (b) Sakaguchi, S.; Yamaga, T.;
Ishii, Y. Iridium-Catalyzed Transfer Hydrogenation of α,β-Unsatu-
rated and Saturated Carbonyl Compounds with 2-Propanol. J. Org.
Chem. 2001, 66, 4710−4712. (c) Ding, B.; Zhang, Z.; Liu, Y.; Sugiya,
M.; Imamoto, T.; Zhang, W. Chemoselective Transfer Hydrogenation
of α,β-Unsaturated Ketones Catalyzed by Pincer-Pd Complexes Using
Alcohol as a Hydrogen Source. Org. Lett. 2013, 15, 3690−3693.
(d) Chen, S.-J.; Lu, G.-P.; Cai, C. A Base-Controlled Chemoselective
Transfer Hydrogenation of α,β-Unsaturated Ketones Catalyzed by
[IrCp*Cl2]2 with 2-Propanol. RSC Adv. 2015, 5, 13208−13211.
(6) For hydrosilane as a hydrogen donor, see: (a) Keinan, E.;
Greenspoon, N. Highly Chemoselective Palladium-Catalyzed Con-
jugate Reduction of α,β-Unsaturated Carbonyl Compounds with
Silicon Hydrides and Zinc Chloride Cocatalyst. J. Am. Chem. Soc.
1986, 108, 7314−7325. (b) Appella, D. H.; Moritani, Y.; Shintani, R.;
Ferreira, E. M.; Buchwald, S. L. Asymmetric Conjugate Reduction of
α,β-Unsaturated Esters Using a Chiral Phosphine-Copper Catalyst. J.
Am. Chem. Soc. 1999, 121, 9473−9474. (c) Moritani, Y.; Appella, D.
H.; Jurkauskas, V.; Buchwald, S. L. Synthesis of β−Alkyl Cyclo-
pentanones in High Enantiomeric Excess via Copper-Catalyzed
Asymmetric Conjugate Reduction. J. Am. Chem. Soc. 2000, 122,
6797−6798. (d) Lipshutz, B. H.; Servesko, J. M. CuH-Catalyzed
Asymmetric Conjugate Reduction of Acyclic Enones. Angew. Chem.,
Int. Ed. 2003, 42, 4789−4792.
REFERENCES
■
(1) For selected reviews on transfer hydrogenation reactions, see:
(a) Brieger, G.; Nestrick, T. J. Catalytic Transfer Hydrogenation.
Chem. Rev. 1974, 74, 567−580. (b) Johnstone, R. A. W.; Wilby, A. H.;
Entwistle, I. D. Heterogeneous Catalytic Transfer Hydrogenation and
its Relation to Other Methods for Reduction of Organic Compounds.
Chem. Rev. 1985, 85, 129−170. (c) Zassinovich, G.; Mestroni, G.;
Gladiali, S. Asymmetric Hydrogen Transfer Reactions Promoted by
Homogeneous Transition Metal Catalysts. Chem. Rev. 1992, 92,
1051−1069. (d) Fujita, K.; Yamaguchi, R. Cp*Ir Complex-Catalyzed
Hydrogen Transfer Reactions Directed towards Environmentally
Benign Organic Synthesis. Synlett 2005, 560−571. (e) Dobereiner, G.
E.; Crabtree, R. H. Dehydrogenation as a Substrate-Activating
Strategy in Homogeneous Transition-Metal Catalysis. Chem. Rev.
2010, 110, 681−703. (f) Wang, D.; Astruc, D. The Golden Age of
Transfer Hydrogenation. Chem. Rev. 2015, 115, 6621−6686.
(g) Werkmeister, S.; Neumann, J.; Junge, K.; Beller, M. Pincer-
Type Complexes for Catalytic (De)Hydrogenation and Transfer
(De)Hydrogenation Reactions: Recent Progress. Chem. - Eur. J. 2015,
21, 12226−12250.
(2) For selected references on transfer hydrogenation of ketones,
see: (a) Reetz, M. T.; Li, X. An Efficient Catalyst System for the
Asymmetric Transfer Hydrogenation of Ketones: Remarkably Broad
Substrate Scope. J. Am. Chem. Soc. 2006, 128, 1044−1045. (b) Clarke,
Z. E.; Maragh, P. T.; Dasgupta, T. P.; Gusev, D. G.; Lough, A. J.;
Abdur-Rashid, K. A Family of Active Iridium Catalysts for Transfer
Hydrogenation of Ketones. Organometallics 2006, 25, 4113−4117.
(c) Sonnenberg, J. F.; Coombs, N.; Dube, P. A.; Morris, R. H. Iron
Nanoparticles Catalyzing the Asymmetric Transfer Hydrogenation of
Ketones. J. Am. Chem. Soc. 2012, 134, 5893−5899. (d) Johnson, T.
C.; Totty, W. G.; Wills, M. Application of Ruthenium Complexes of
Trizole-Containing Tridentate Ligands to Asymmetric Transfer
Hydrogenation of Ketones. Org. Lett. 2012, 14, 5230−5233.
(e) Zuo, W.; Lough, A. J.; Li, Y. F.; Morris, R. H. Amine(imine)-
diphosphine Iron Catalyst for Asymmetric Transfer Hydrogenation of
Ketones and Imines. Science 2013, 342, 1080−1083. (f) Touge, T.;
Nara, H.; Fujiwhara, M.; Kayaki, Y.; Ikariya, T. Efficient Access to
Chiral Benzhydrols via Asymmetric Transfer Hydrogenation of
Unsymmetrical Benzophenones with Bifunctional Oxo-Tether
Ruthenium Catalysts. J. Am. Chem. Soc. 2016, 138, 10084−10087.
(3) For selected references on transfer hydrogenation of imines, see:
(a) Uematsu, N.; Fujii, A.; Hashiguchi, S.; Ikariya, T.; Noyori, R.
Asymmetric Transfer Hydrogenation of Imines. J. Am. Chem. Soc.
1996, 118, 4916−4917. (b) Gnanamgari, D.; Moores, A.; Rajaseelan,
E.; Crabtree, R. H. Transfer Hydrogenation of Imines and Alkenes
and Direct Reduction Amination of Aldehydes Catalyzed by Triazole-
Derived Iridium(I) Carbene Complexes. Organometallics 2007, 26,
1226−1230. (c) Wang, C.; Pettman, A.; Bacsa, J.; Xiao, J. A Versatile
Catalyst for Reductive Amination by Transfer Hydrogenation. Angew.
Chem., Int. Ed. 2010, 49, 7548−7552. (d) Li, S.; Li, G.; Meng, W.; Du,
H. A Frustrated Lewis Pair Catalyzed Asymmetric Transfer
Hydrogenation of Imines Using Ammonia Borane. J. Am. Chem.
Soc. 2016, 138, 12956−12962.
(7) For formate as a hydrogen donor, see: (a) Himeda, Y.;
Onozawa-Komatsuzaki, N.; Miyazawa, S.; Sugihara, H.; Hirose, T.;
Kasuga, K. pH-Dependent Catalytic Activity and Chemoselectivity in
Transfer Hydrogenation Catalyzed by Iridium Complex with 4,4’-
Dihyroxys-2,2’-bipyridine. Chem. - Eur. J. 2008, 14, 11076−11081.
(b) Li, X.; Li, L.; Tang, Y.; Zhong, L.; Cun, L.; Zhu, J.; Liao, J.; Deng,
J. Chemoselective Conjugate Reduction of α,β-Unsaturated Ketones
Catalyzed by Rhodium Amido Complexes in Aqueous Media. J. Org.
Chem. 2010, 75, 2981−2988.
(8) For selected reviews on metal-catalyzed C(sp3)−H functional-
ization reactions, see: (a) Labinger, J. A.; Bercaw, J. E. Understanding
and Exploiting C−H Bond Activation. Nature 2002, 417, 507−514.
(b) Hartwig, J. F. Carbon-Heteroatom Bond Formation Catalysed by
Organometallic Complexes. Nature 2008, 455, 314−322. (c) Lyons,
T. W.; Sanford, M. S. Palladium-Catalyzed Ligand-Directed C−H
Functionalization Reactions. Chem. Rev. 2010, 110, 1147−1169.
(d) Shang, R.; Ilies, L.; Nakamura, E. Iron-Catalyzed C−H Bond
Activation. Chem. Rev. 2017, 117, 9086−9139. (e) He, J.; Wasa, M.;
Chan, K. S. L.; Shao, Q.; Yu, J.-Q. Palladium-Catalyzed Trans-
formation of Alkyl C−H Bonds. Chem. Rev. 2017, 117, 8754−8786.
(f) Chu, C. K.; Rovis, T. Complementary Strategies for Directed
C(sp3)−H Functionalization: A Comparison of Transition-Metal-
Catalyzed Activation, Hydrogen Atom Transfer, and Carbene/
Nitrene Transfer. Angew. Chem., Int. Ed. 2018, 57, 62−101.
(9) For our work on C(sp3)−H functionalization, see: (a) Kawamor-
ita, S.; Miyazaki, T.; Iwai, T.; Ohmiya, H.; Sawamura, M. Rh-
Catalyzed Borylation of N-Adjacent C(sp3)−H Bonds with a Silica-
Supported Triaryphosphine Ligand. J. Am. Chem. Soc. 2012, 134,
12924−12927. (b) Kawamorita, S.; Murakami, R.; Iwai, T.;
Sawamura, M. Synthesis of Primary and Secondary Alkylboronates
through Site-Selective C(sp3)−H Activation with Silica-Supported
Monophosphine−Ir Catalysts. J. Am. Chem. Soc. 2013, 135, 2947−
2950. (c) Reyes, R. L.; Harada, T.; Taniguchi, T.; Monde, K.; Iwai,
T.; Sawamura, M. Enantioselective Rh- or Ir-Catalyzed Directed
C(sp3)−H Borylation with Phosphoramidite Chiral Ligands. Chem.
Lett. 2017, 46, 1747−1750. (d) Murakami, R.; Sano, K.; Iwai, T.;
Taniguchi, T.; Monde, K.; Sawamura, M. Palladium-Catalyzed
Asymmetric C(sp3)−H Allylation of 2-Alkylpyridines. Angew. Chem.,
(4) (a) Hashiguchi, S.; Fujii, A.; Takehara, J.; Ikariya, T.; Noyori, R.
Asymmetric Transfer Hydrogenation of Aromatic Ketones Catalyzed
by Chiral Ruthenium(II) Complexes. J. Am. Chem. Soc. 1995, 117,
7562−7563. (b) Noyori, R.; Hashiguchi, S. Asymmetric Transfer
Hydrogenation Catalyzed by Chiral Ruthenium Complexes. Acc.
Chem. Res. 1997, 30, 97−102. (c) Noyori, R. Asymmetric Catalysis:
E
Org. Lett. XXXX, XXX, XXX−XXX