Communications
[4] For an alternative reaction pathway, see: M. Suzuki, K.-I.
Nunami, T. Moriya, K. Matsumoto, N. Yoneda, J. Org. Chem.
1978, 43, 4933 – 4935.
known a-isocyanoacetates. These studies highlighted the
concept of a substrate-design approach to the development
of novel multicomponent reactions.[5e] Indeed, by simply
incorporating a nitro group into the phenyl ring of 2, we
obtained an isocyanoacetate, 6, which displayed a completely
different reactivity profile to that of 2 as a result of the
[5] For recent reviews, see: a) C. Hulme, V. Gore, Curr. Med. Chem.
2003, 10, 51 – 80; b) R. V. A. Orru, M. De Greef, Synthesis 2003,
1471 – 1499; c) A. Jacobi von Wangelin, H. Neumann, D.
Gördes, S. Klaus, D. Strübing, M. Beller, Chem. Eur. J. 2003, 9,
4286 – 4294; d) V. Nair, C. Rajesh, A. U. Vinod, S. Bindu, A. R.
Sreekanth, J. S. Mathen, L. Balagopal, Acc. Chem. Res. 2003, 36,
899 – 907; e) J. Zhu, Eur. J. Org. Chem. 2003, 1133 – 1144; f) G.
Balme, E. Bossharth, N. Monteiro, Eur. J. Org. Chem. 2003,
4101 – 4111; g) C. Simon, T. Constantieux, J. Rodriguez, Eur. J.
Org. Chem. 2004, 4957 – 4980; h) P. Tempest, Curr. Opin. Drug
Discovery Dev. 2005, 8, 776 – 788; i) A. Dömling, Chem. Rev.
2006, 106, 17 – 89.
À
increased acidity of the a C H bond and hence the decreased
nucleophilicity of the resulting carbanion. We have demon-
strated previously that the exchange of the ester group of an
isocyanoacetate for an amide group also modulates the
reactivity of these compounds, in this case by decreasing the
À
acidity of the a C H bond(s). The multicomponent reactions
reported herein should find applications in a number of fields
in view of the synthetic and medicinal importance of 5-
methoxyoxazoles[19] and furopyrrolones.[20]
[6] For a monograph, see: Multicomponent Reactions (Eds.: J. Zhu,
H. BienaymØ), Wiley-VCH, Weinheim, 2005.
[7] For a-isocyanoacetamide, see: a) X. Sun, P. Janvier, G. Zhao, H.
BienaymØ, J. Zhu, Org. Lett. 2001, 3, 877 – 880; b) P. Janvier, X.
Sun, H. BienaymØ, J. Zhu, J. Am. Chem. Soc. 2002, 124, 2560 –
2567; c) P. Janvier, M. Bois-Choussy, H. BienaymØ, J. Zhu,
Angew. Chem. 2003, 115, 835 – 838; Angew. Chem. Int. Ed. 2003,
42, 811 – 814.
[8] For ortho-isocyanobenzamide, see: D. Bonne, M. Dekhane, J.
Zhu, Org. Lett. 2005, 7, 5285 – 5288.
[9] For a-isocyanoacetic acid, see: a) D. Bonne, M. Dekhane, J. Zhu,
Org. Lett. 2004, 6, 4771 – 4774; b) D. Bonne, M. Dekhane, J. Zhu,
J. Am. Chem. Soc. 2005, 127, 6926 – 6927.
Experimental Section
Typical procedure: Heptanal (25 mL, 0.18 mmol, 1.2 equiv) was added
to a solution of n-butylamine (20 mL, 0.20 mmol, 1.3 equiv) in toluene
(1 mL), and the mixture was stirred for 10 min at room temperature.
The isocyanide 6 (33 mg, 0.15 mmol, 1.0 equiv) was then added, and
stirring was continued for 4 h at room temperature. The reaction
mixture was then cooled to 08C, and triethylamine (100 mL,
0.75 mmol, 5.0 equiv) was added, followed by a solution of 3-
phenylpropioloyl chloride (49 mg, 0.30 mmol, 2.0 equiv) in toluene
(0.7 mL). The reaction mixture was warmed to room temperature and
was then heated at reflux for 10 min. The solvent was removed in
vacuo, and the crude product was purified by preparative TLC (SiO2,
30% ethyl acetate in heptane) to afford 8a (28.5 mg, 51%) as a
colorless oil.
[10] A. Dömling, I. Ugi, Angew. Chem. 2000, 112, 3300 – 3344;
Angew. Chem. Int. Ed. 2000, 39, 3168 – 3210.
[11] For recent innovative development of Ugi-type reactions, see:
a) L. El Kaïm, L. Grimaud, J. Oble, Angew. Chem. 2005, 117,
8175 – 8178; Angew. Chem. Int. Ed. 2005, 44, 7961 – 7964; b) L.
El Kaïm, M. Gizolme, L. Grimaud, J. Oble, Org. Lett. 2006, 8,
4019 – 4021; c) G. B. Giovenzana, G. C. Tron, S. D. Paola, I. G.
Menegotto, T. Pirali, Angew. Chem. 2006, 118, 1117 – 1120;
Angew. Chem. Int. Ed. 2006, 45, 1099 – 1102.
Received: December 11, 2006
Published online: February 26, 2007
[12] a) C. Housseman, J. Zhu, Synlett 2006, 1777 – 1779; b) R.
Beugelmans, A. Bigot, J. Zhu, Tetrahedron Lett. 1994, 35,
5649 – 5652.
[13] For examples of Ugi-type reactions in toluene in the absence of
additives, see: a) A. Fayol, J. Zhu, Org. Lett. 2005, 7, 239 – 242;
b) R. Gµmez-Montaæo, E. Gonzµlez-Zamora, P. Potier, J. Zhu,
Tetrahedron 2002, 58, 6351 – 6358.
[14] L. Banfi, R. Riva, Org. React. 2005, 65, 1 – 140.
[15] For recent reviews on the chemistry of oxazoles, see: a) V. S. C.
Yeh, Tetrahedron 2004, 60, 11995 – 12042; b) J. Zhong, Nat.
Prod. Rep. 2005, 22, 186 – 229.
[16] G. Cuny, R. Gµmez-Montaæo, J. Zhu, Tetrahedron 2004, 60,
4879 – 4885.
[17] For reviews on the Diels–Alder reaction of oxazoles with
alkynes, see: a) M. Y. Karpeiskii, V. L. Florentꢀev, Russ. Chem.
Rev. 1969, 38, 540 – 546; b) P. A. Jacobi in Adv. in Heterocyclic
Nat. Prod. Syn., Vol. 2 (Ed.: W. H. Pearson), 1992, pp. 251 – 298;
for examples of the cycloaddition of 5-aminooxazoles with
alkynes, see: c) P. Janvier, H. BienaymØ, J. Zhu, Angew. Chem.
2002, 114, 4467 – 4470; Angew. Chem. Int. Ed. 2002, 41, 4291 –
4294; d) A. Fayol, J. Zhu, Angew. Chem. 2002, 114, 3785 – 3787;
Angew. Chem. Int. Ed. 2002, 41, 3633 – 3635.
Keywords: furopyrrolones · isocyanides ·
multicomponent reactions · oxazoles · Ugi reaction
.
[1] a) D. Hoppe, Angew. Chem. 1974, 86, 878 – 893; Angew. Chem.
Int. Ed. Engl. 1974, 13, 789 – 804; b) U. Schöllkopf, Angew.
Chem. 1977, 89, 351 – 360; Angew. Chem. Int. Ed. Engl. 1977, 16,
339 – 348; c) S. Marcaccini, T. Torroba, Org. Prep. Proced. Int.
1993, 25, 141 – 208.
À
[2] For selected examples of metal-mediated C H activation of a-
isocyanoacetates for the synthesis of heterocycles, see: a) T.
Saegusa, Y. Ito, H. Kinoshita, S. Tomita, J. Org. Chem. 1971, 36,
3316 – 3323; b) H. Takaya, S. Kojima, S. Murahashi, Org. Lett.
2001, 3, 421 – 424; c) Y. Ito, M. Sawamura, T. Hayashi, J. Am.
Chem. Soc. 1986, 108, 6405 – 6406; d) A. Tongi, S. D. Pastor, J.
Org. Chem. 1990, 55, 1649 – 1664; e) T. Hayashi, E. Kishi, V. A.
Soloshonok, Y. Uozumi, Tetrahedron Lett. 1996, 37, 4969 – 4972;
f) Y.-R. Lin, X.-T. Zhou, L.-X. Dai, J. Sun, J. Org. Chem. 1997,
62, 1799 – 1803; g) R. Grigg, M. I. Lansdell, M. Thornton-Pett,
Tetrahedron 1999, 55, 2025 – 2044; h) S. Kamijo, C. Kanazawa, Y.
Yamamoto, J. Am. Chem. Soc. 2005, 127, 9260 – 9266; i) C.
Kanazawa, S. Kamijo, Y. Yamamoto, J. Am. Chem. Soc. 2006,
128, 10662 – 10663.
À
[18] We are exploiting other a-isocyanoacetates that have a C H
bonds with reinforced acidity; see: a) M. Bergemann, R.
Neidlein, Helv. Chim. Acta 1999, 82, 909 – 918; b) S. Müller, R.
Neidlein, Helv. Chim. Acta 2002, 85, 2222 – 2231.
[19] B. H. Lipshutz, Chem. Rev. 1986, 86, 795 – 819, and references
therein.
[3] a) R. S. Bon, C. Hong, M. J. Bouma, R. F. Schmitz, F. J. J.
De Kanter, M. Lutz, A. L. Spek, R. V. A. Orru, Org. Lett.
2003, 5, 3759 – 3762; b) R. S. Bon, B. Van Vliet, N. E. Sprenkels,
R. F. Schmitz, F. J. J. De Kanter, C. V. Stevens, M. Swart, F. M.
Bickelhaupt, M. B. Groen, R. V. A. Orru, J. Org. Chem. 2005, 70,
3542 – 3553.
[20] M. Chapdelaine, WO Patent 2005/100351A1, 2005 [Chem. Abstr.
2005, 143, 422508].
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 2485 –2488