Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
the catalysts. This reaction is the first example of not only the
catalytic transformation of hydroperoxides into enones, but
also the use of a hypervalent iodine catalyst other than in
oxidation reaction. The combination of singlet oxygen ene
reaction and this method enables oxygenative allylic
transposition of alkenes into enones with water as the only
stoichiometric waste. This reaction was applicable to the one-
operation conversion of alkenes to enones. Further studiess to
increase the efficiency of the one-operation reaction and to gain
the insight into the mechanism are under way.
This work was partly supported by a Grant-in-Aid for Scientific
Research on Innovative Areas “Advanced Molecular
Transformations by Organocatalysis” (No. 23105011) from
MEXT, “Precisely Designed Catalysts with Customized
Scaffolding” (No. JP16H00998) from JSPS, and Life Science
Research (Platform for Drug Discovery, Informatics, and
Structural Life Science) from Japan Agency for Medical Research
and Development (AMED), Japan.
Hu, Y. Wu and H. Ding, J. Am. Chem. Soc. 2017, 139, 6098.
DOI: 10.1039/C7CC08957K
8
Recently, our group has reported the catalytic Type II
oxygenation of alkenes into enones using an azaadamantane-
type oxoammonium salt catalyst. This reaction has solved
some problems of Mihelich’s protocol; however, this method
needs two types of stoichiometric organic oxidant, and cyclic
alkenes are not suitable for this reaction. See: (a) S. Nagasawa,
Y. Sasano and Y. Iwabuchi, Chem. Eur. J. 2017, 23, 10276; (b)
S. Nagasawa, Y. Sasano and Y. Iwabuchi, Angew. Chem. Int. Ed.
2016, 55, 13189.
(a) H. J. Liu and K.-S. Shia, Tetrahedron 1998, 54, 13449; (b) J.
B. Farcet, M. Himmelbauer and J. Mulzer, Eur. J. Org. Chem.
2013, 4379; (c) F. Löbermann, L. Weisheit and D. Trauner, Org.
Lett. 2013, 15, 4324.
9
10 (a) N. Kornblum and H. E. DeLaMare, J. Am. Chem. Soc. 1951,
73, 880; Catalytic conditions, see: (b) S. T. Staben, X. Linghu
and F. D. Toste, J. Am. Chem. Soc. 2006, 128, 12658; (c) C.
Wiegand, E. Herdtweck and T. Bach, Chem. Commum. 2012,
48, 10195; (d) M. Klaper, P. Wessig and T. Linker, Chem.
Commun. 2016, 52, 1210; (e) B. Parhi, S. Maity and P. Ghorai,
Org. Lett. 2016, 18, 5220.
11 (a) W. P. Jencks and M. Gilchrist, J. Am. Chem. Soc. 1964, 86
,
1410; (b) E. L. Loechler, A. M. Schneider, D. B. Schwartz and T.
Conflicts of interest
There are no conflicts to declare.
C. Hollocher, J. Am. Chem. Soc. 1987, 109, 3076; (c) E.
Dimitrijević and M. S. Taylor, ACS catal. 2013, 3, 945; For
selected recent examples, see: (d) K. Ishihara and Y. Lu, Chem.
Sci. 2016, , 1276; (e) W.-B. Tang, K.-S. Cao, S.-S. Meng and
7
W.-H. Zheng, Synthesis 2017, 49, 3670; (f) B.-J. Li, R. D. Simard
and A. M. Beauchemin Chem. Commun. 2017, 53, 8667.
12 Reviews of hypervalent iodine mediated reactions, see: (a) A.
Yoshimura and V. V. Zhdankin, Chem. Rev. 2016, 116, 3328;
(b) V. V. Zhdankin and P. J. Stang, Chem. Rev. 2008, 108, 5299;
(c) T. Wirth, Angew. Chem. Int. Ed. 2005, 44, 3656.
13 Although an example of hypervalent iodine-promoted
dehydration of hydroperoxides has been reported, the
carbonyl compounds were obtained in moderate yield using
highly reactive hydroperoxides and stoichiometric amount of
hypervalent iodine. During our work, dehydration of benzylic
hydroperoxides using 1 equivalent of PhI(OAc)2 was reported.
See: (a) M. Ochiai, T. Ito, H. Takahashi, M. Toyonari, T. Sueda,
S. Goto and M. Shiro, J. Am. Chem. Soc. 1996, 118, 7716; (b) S.
Samanta, C. Ravi, A. Joshi, V. Pappula and S. Adimurthy,
Tetrahedron Lett. 2017, 58, 721.
14 (a) K. C. Nicolaou, T. Montagnon, P. S. Baran and Y.-L. Zhong,
J. Am. Chem. Soc. 2002, 124, 2245; (b) J. T. Su and W. A.
Goddard III, J. Am. Chem. Soc. 2005, 127, 14146.
15 M. S. Yusubov, D. Y. Svitich, A. Yoshimura, V. N. Nemykin and
V. V. Zhdankin, Chem. Commun. 2013, 49, 11269.
16 (a) K. Ogasawara, Pure Appl. Chem. 1994, 66, 2119; For
selected recent examples, see: (b) I. Hayakawa, K. Niida and H.
Notes and references
1
(a) P. T. Anastas and T. C. Williamson, ACS Symp. Ser. 1996,
626, 1; (b) P. T. Anastas and M. M. Kirchhoff, Acc. Chem. Res.
2002, 35, 686.
(a) Y. Qin, L. Zhu and S. Luo, Chem. Rev. 2017, 117, 9433; (b)
C. G. Newton, S.-G. Wang, C. C. Oliveira and N. Cramer, Chem.
Rev. 2017, 117, 8908; (c) T. Gensch, M. N. Hopkinson, F.
Glorius and J. Wencel-Delord, Chem. Soc. Rev. 2016, 45, 2900;
(d) H. M. L. Davies and D. Morton, J. Org. Chem. 2016, 81, 343;
(e) T. Newhouse and P. S. Baran, Angew. Chem. Int. Ed. 2011,
50, 3362.
2
3
4
(a) A. L. García-Cabeza, F. J. Moreno-Dorado, M. J. Ortega and
F. M. Guerra, Synthesis 2016, 48, 2323; (b) S. E. Mann, L.
Benhamou and T. D. Sheppard, Synthesis 2015, 47, 3079; (c) K.
Chen, P. Zhang, Y. Wang and H. Li, Green. Chem. 2014, 16
2344; (d) V. Weidmann and W. Maison, Synthesis 2013, 45
2201; (e) A. Nakamura and M. Nakada, Synthesis 2013, 45
1421.
,
,
,
For selected recent examples of Type I allylic oxygenation,
see: (a) W. J. Ang and Y. Lam, Org. Biomol. Chem. 2015, 13
,
1048; (b) Y. Wang, Y. Kuang and Y. Wang, Chem. Commun.
2015, 51, 5852; (c) E. J. Horn, B. R. Rosen, Y. Chen, J. Z. Tang,
K. Chen, M. D. Eastgate and P. S. Baran, Nature 2016, 533, 77.
Kigoshi, Chem. Commun. 2015, 51
,
11568; (c) G.
Parthasarathy, U. Eggert and M. Kalesse, Org. Lett. 2016, 18
2320; (d) D. Dobler and O. Reiser, J. Org. Chem. 2016, 81
,
,
5
6
(a) ref 3b; (b) G. O. Schenck, Naturwissenchaften 1948, 35
28; (c) P. P. Pradhan, J. M. Bobbitt and W. F. Bailey, Org. Lett.
2006, , 5485.
(a) M. Prein and W. Adam, Angew. Chem. Int. Ed. 1996, 35
,
10357; (e) C. Shao, H.-J. Yu, N.-Y. Wu, C.-G. Feng and G.-Q. Lin,
8
Org. Lett. 2010, 12, 3820.
,
17 Y. Hayashi, Chem. Sci. 2016, 7, 866.
477; (b) M. Stratakis and M. Orfanopoulos, Tetrahedron 2000,
56, 1595; (c) D. A. Singleton, C. Hang, M. J. Szymanski, M. P.
Meyer, A. G. Leach, K. T. Kuwata, J. S. Chen, A. Greer, C. S.
Foote and K. N. Houk, J. Am. Chem. Soc. 2003, 125, 1319; (d)
A. A. Ghogare and A. Greer, Chem. Rev. 2016, 116, 9994.
18 (a) J. W. Arbogast, A. P. Darmanyan, C. S. Foote, Y. Rubin, F. N.
Diederich, M. M. Alvarez, S. J. Anz and R. L. Whetten, J. Phys.
Chem. 1991, 95, 11; (b) H. Tokuyama and E. Nakamura, J. Org.
Chem. 1994, 59, 1135.
19 Other photosensitizers (TPP, rose bengal, eosin Y, methylene
blue) resulted in a low conversion level.
7
(a) E. D. Mihelich and D. J. Eickhoff, J. Org. Chem. 1983, 48,
4135; Hypochlorite-mediated dehydration of allylic
hydroperoxides has been attempted. The reaction required
excess amount of reagents and furnished the expected
unsaturated ketones as mixtures with significant amounts of
byproducts lacking unsaturation. However, an exceptional
example has recently been reported. See: (b) T. J. Fisher and
20 (a) C. Ouannes and T. Wilson, J. Am. Chem. Soc. 1368, 90
6527; (b) M. Klaper and T. Linker J. Am. Chem. Soc. 2015, 18
,
,
a,b-
3114; (c) W.-T. Xu, B. Huang, J.-J. Dai, J. Xu and H.-J. Xu, Org.
Lett. 2016, 18, 3114. (d) W. Ding, L.-Q. Lu, Q.-Q. Zhou, Y. Wei,
J.-R. Chen and W.-J. Xiao, J. Am. Chem. Soc. 2017, 139, 63.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins