3658
S. K. Chattopadhyay et al. / Tetrahedron Letters 48 (2007) 3655–3659
O
O
H2, Pd-C
methanol
92%
O
O
H
N
H
N
CO2Me
CO2Me
N
N
H
H
H
O
O
Ph
Ph
4a
15
Scheme 5.
5. Boger, D. L.; Yohannes, D. J. Am. Chem. Soc. 1991, 113,
1427.
utilising intramolecular olefination of an amidophosph-
onate-aldehyde. The methodology described here may
find application in the synthesis of other cyclic peptides
containing a DPhe-residue. It is well known17 that incor-
poration of a DPhe-residue in peptides confers resistance
to enzymatic degradation. Moreover, DPhe-residues in
cyclic peptides may introduce interesting conforma-
tional features relevant to drug design. Macrocyclic
compounds 4a–c may therefore find application in this
regard. Their utility in the synthesis of biaryl ether-
based natural products (and analogues thereof) through
stereo-controlled hydrogenation seems to be a possibil-
ity as well. The scaffold18 may also prove to provide
opportunities for the preparation of derivatised biaryl
ether-based cyclic peptides through well known trans-
formation reactions on the unsaturated system.19 Future
work in these directions will be pursued in our
laboratory.
6. (a) Pearson, A. J.; Bignan, G.; Zhang, P.; Chelliah, M. J.
Org. Chem. 1996, 61, 3940; (b) Janetka, J. W.; Rich, D. R.
J. Am. Chem. Soc. 1997, 119, 6488; (c) Beugelmans, R.;
Singh, G. P.; Bois-Choussy, M.; Chastanet, J.; Zhu, J. J.
Org. Chem. 1994, 59, 5535; (d) Bigot, A.; Tran Huu Dau,
M. E.; Zhu, J. J. Org. Chem. 1999, 64, 6283; (e)
Beugelmans, R.; Bigot, A.; Zhu, J. Tetrahedron Lett.
1994, 35, 7391.
7. Perez-Gonzalez, M.; Jackson, R. F. W. Chem. Commun.
2000, 2423.
8. For some recent applications, see: (a) Harvey, J. E.; Raw,
S. A.; Taylor, R. J. K. Tetrahedron Lett. 2003, 44, 7209;
(b) Mulzer, J.; Ohler, E. Angew. Chem., Int. Ed. 2001, 40,
3842; (c) Gonzalez, M. A.; Pattenden, G. Angew. Chem.,
Int. Ed. 2003, 42, 1255; (d) Yeung, K.-S.; Paterson, I.
Chem. Rev. 2005, 105, 4237; (e) O’Neil, G. W.; Philips, A.
J. J. Am. Chem. Soc. 2006, 128, 5340; (f) Seo, S.-Y.; Jung,
J.-K.; Paek, S.-M.; Lee, Y.-S.; Kim, S.-H.; Suh, Y.-G.
Tetrahedron Lett. 2006, 47, 6527.
9. Buck, E.; Song, Z. J.; Tschaen, D.; Dormer, P. G.;
Volante, R. P.; Riedes, P. J. Org. Lett. 2002, 9, 1623.
10. Schmidt, U.; Lieberknecht, A.; Wild, J. Synthesis 1984, 33.
11. (a) Schmidt, U.; Griesser, H.; Leitenberger, V.; Leiberkn-
echt, A.; Mangold, R.; Meyer, R.; Reidel, B. Synthesis
1992, 487; (b) Geyer, A.; Gege, C.; Schmidt, R. R. Angew.
Chem., Int. Ed. 2000, 39, 3245; (c) Zhang, J. Y.; Xiong, C.
Y.; Ying, J. F.; Wang, W.; Hruby, V. J. Org. Lett. 2003, 5,
3115; (d) Adamczyk, M.; Akireddy, S. R.; Reddy, R. E.
Org. Lett. 2001, 3, 3157.
Acknowledgements
We are thankful to the DST and CSIR, New Delhi, for
funds and fellowships.
References and notes
1. For reviews, see: (a) Rao, A. V. R.; Gurjar, M. K.; Reddy,
L.; Rao, A. S. Chem. Rev. 1995, 95, 2135; (b) Nicolaou, K.
C.; Boddy, C. N. C.; Brase, S.; Winssinger, N. Angew.
Chem., Int. Ed. 1999, 38, 2096; (c) Zhu, J. Synlett 1997,
133.
12. Chattopadhyay, S. K.; Pattenden, G. J. Chem. Soc.,
Perkin Trans. 1 2000, 2429.
13. (a) Nicolaou, K. C.; Seitz, S. P.; Pavia, M. R. J. Am.
Chem. Soc. 1982, 104, 2030; (b) Aristoff, P. A. J. Org.
Chem. 1981, 46, 1954.
2. For a review, see: Fairlie, D. P.; Abbenante, G.; March, S.
R. Curr. Med. Chem. 1995, 2, 654; For some recent
reports, see: (a) Venkatraman, S.; Njoroge, F. G.; Girija-
vallabham, V. M.; Madison, V. S.; Yao, N. H.; Prongay,
A. N.; Butkiewicz, N.; Pichardo, J. J. Med. Chem. 2005,
48, 5088; (b) Janetka, J. W.; Raman, P.; Stayshur, K.;
Flentke, G. R.; Rich, D. H. J. Am. Chem. Soc. 1997, 119,
441.
3. (a) Cai, Q.; He, G.; Ma, D. J. Org. Chem. 2006, 71, 5268;
(b) Decicco, C. P.; Song, Y.; Evans, D. A. Org. Lett. 2001,
3, 1029; (c) Kohn, W. D.; Zhang, L.; Weigel, J. A. Org.
Lett. 2001, 3, 971; (d) Arnusch, C. J.; Pieters, R. J.
Tetrahedron Lett. 2004, 45, 4153; (e) Cristau, P.; Vors,
J.-P.; Zhu, J. Org. Lett. 2001, 3, 4079; (f) Cristau, P.; Vors,
J.-P.; Zhu, J. Tetrahedron Lett. 2003, 44, 5575; (g) West, C.
W.; Rich, D. E. Org. Lett. 1999, 1, 1819; (h) Pearson, A.
J.; Zhang, P.; Bignan, G. J. Org. Chem. 1997, 62, 4536.
4. (a) Evans, D. A.; Ellman, J. A.; DeVries, K. M. J. Am.
Chem. Soc. 1989, 111, 8912; (b) Suzuki, Y.; Nishiyama, S.;
Yamamura, S. Tetrahedron Lett. 1990, 31, 4053.
14. Typical procedure for the conversion 5a ! 4a: A solution of
phosphonate-aldehyde 5a (124 mg, 0.2 mmol) in dry
toluene (40 ml) was added slowly over 4 h to a solution
of K2CO3 (166 mg, 1.2 mmol) and 18-crown-6 (600 mg,
2.4 mmol) in dry toluene (160 ml) at 80 ꢁC. The mixture
was then heated to reflux for 16 h and then allowed to
warm to rt. It was then sequentially washed with HCl
(1 N, 2 · 25 ml), water (3 · 50 ml) and brine (25 ml) and
then dried (Na2SO4) and filtered. The filtrate was concen-
trated under reduced pressure to leave a viscous mass
which was purified by column chromatography over silica
gel using a mixture of chloroform and methanol (19:1) as
eluent to afford product 4a as a colourless crystalline solid
(48 mg, 51%).
Compound 4a: Mp: 278–280 ꢁC. [a]D ꢀ42 (c, 0.5 in
CHCl3 + MeOH, 3:1). IR (KBr): 3283, 1718, 1643, 1497,
1
1244 cmꢀ1. H NMR (400 MHz, DMSO-d6): d 9.56 (1H,
s), 7.85 (1H, d, J = 8.1 Hz,), 7.69 (1H, s), 7.34–7.10 (9H,
m), 6.96–6.84 (2H, m), 6.69 (1H, s), 6.24 (1H, s), 4.69 (1H,
br s), 3.77 (3H, s), 3.02–2.91 (2H, m), 2.71–2.40 (3H, m),