3270 Organometallics, Vol. 26, No. 14, 2007
Communications
16
Tetranuclear contact ion pairs in Li2Cu2R4 and solvent-
separated ions with oligonuclear cuprate anions are well-known.
In pentanuclear cuprates such as [Cu5Ph6]- the copper atoms
formed a trigonal bipyramid with Cu-C bond lengths of 1.99-
(2) and 2.19(2) Å to the equatorial and axial copper atoms,
respectively.17 One18 or both19 of the axial copper atoms can
be substituted by electropositive lithium or magnesium atoms.
A higher content of electropositive metals led to more open
structures of the higher order cuprates.20 Often not all halogen
atoms are substituted by aryl groups, and heteroleptic cuprates
such as [Cu5(C6H4CHdCH2)2Br4]- crystallized.21 The cyanide,
which can be regarded as a pseudohalide, bridges the cations
and anions, thus leading to chain structures.22 The diphenyl-
cuprate anion can be part of the solvent-separated [Li(12-crown-
4)2][Ph-Cu-Ph] (average Cu-C ) 1.925(10) Å)23 or contact
ion pairs such as [Li2Cu(aryl)2Br] (average Cu-C ) 1.941(4)
Å; aryl ) C6H4-2-CH2N(R)CH2CH2NR2 with R ) Me, Et).24
In the chemistry of solvent-separated organocuprates cited
above, the aryl groups were bound to the copper atoms and the
electropositive cations (lithium and magnesium) were coordi-
nated by ether molecules or halide anions, thus forming, for
Figure 1. Molecular structure of [(thf)3Ca(µ-Ph)3Ca(thf)3]+[Ph-
Cu-Ph]- (1). The ellipsoids represent a probability of 40%; H
atoms are omitted for clarity reasons. Selected bond lengths (Å)
and angles (deg): Ca-O1 ) 2.404(2), Ca-O2 ) 2.414(2), Ca-
O3 ) 2.418(2), Ca-C1 ) 2.625(2), Ca-C1A ) 2.613(2), Ca-
C7 ) 2.605(3), Cu-C23 ) 1.910(3), Ca‚‚‚CaA ) 3.1799(9); Ca-
C1-CaA ) 74.76(7), Ca-C7-CaA ) 75.2(1), C23-Cu-C23A
) 180.0(2), C2-C1-C6 ) 113.4(2), C8-C7-C8A ) 112.5(3),
C24-C23-C28 ) 114.1(3).
example, [Li(thf)4]+,17 [Li4Cl2(OEt2)10]2+ 19
,
[Mg(thf)6]2+, and
[Mg(thf)5Cl]+.21
The molecular structure of 1 consists of solvent-separated
ions and is shown in Figure 1.25 The dinuclear cation contains
the hexacoordinate calcium atoms in distorted-octahedral en-
vironments with bridging phenyl groups and terminally bound
THF molecules which leads to a facial arrangement of the
substituents. Due to the bridging position of the phenyl groups,
the Ca-C bond lengths vary between 2.605(3) and 2.625(2) Å
and are slightly larger than those observed for arylcalcium
iodides. The C-Ca-C angles have values in the rather narrow
range 84.80(9)-87.98(7)°, and the Ca-C-Ca bonds can be
described as three-center-two-electron bonds. Neglect of the
THF ligands leads to a pyramidal arrangement of the hydro-
carbyl ligands at calcium, which was also observed for the tris-
[bis(trimethylsilyl)methyl]calciate anion with a trigonal-pyra-
midal environment of the three-coordinate calcium atom, similar
to the case for the isotypic Yb derivative.26 In this anion, the
Ca-C distances display values between 2.474(4) and 2.556(4)
Å and C-Ca-C angles between 107.9(1) and 116.1(1)°. With
this anion in mind, the cation of 1 can also be regarded as a
pyramidal triphenylcalciate coordinating to another calcium
atom, leading to a Ca‚‚‚Ca distance of 3.1799(9) Å; the vacant
coordination sites are occupied by THF molecules. Comparable
structures are unknown for the magnesium derivatives. In [Ph2-
Mg(µ-Ph)2MgPh2]2- the magnesium atoms display distorted-
tetrahedral coordination spheres.27 In oligomeric arylmagnesium
compounds, the molecular structures can also be derived
according to VSEPR rules.28,29
(16) (a) van Koten, G.; Jastrzebski, J. T. B. H.; Noltes, J. G. J.
Organomet. Chem. 1977, 140, C23-C27. (b) van Koten, G.; Noltes, J. G.
J. Am. Chem. Soc. 1979, 101, 6593-6599. (c) van Koten, G.; Jastrzebski,
J. T. B. H. J. Am. Chem. Soc. 1985, 107, 697-698.
(17) Edwards, P. G.; Gellert, R. W.; Marks, M. W.; Bau, R. J. Am. Chem.
Soc. 1982, 104, 2072-2073.
(18) Khan, S. I.; Edwards, P. G.; Yuan, H. S. H.; Bau, R. J. Am. Chem.
Soc. 1985, 107, 1682-1684.
(19) Hope, H.; Oram, D.; Power, P. P. J. Am. Chem. Soc. 1984, 106,
1149-1150.
(20) (a) Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 1989, 111,
4135-4136. (b) Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 1990,
112, 8008-8014.
The diphenylcuprate anion is strictly linear, due to crystal-
lographic inversion symmetry. The Cu-C distances with values
of 1.910(3) Å are slightly shorter than those observed for
solvent-separated [Li(12-crown-4)2][Ph-Cu-Ph].23
(21) Eriksson, H.; O¨ rtendahl, M.; Håkansson, M. Organometallics 1996,
15, 4823-4831.
(22) (a) Kronenburg, C. M. P.; Jastrzebski, J. T. B. H.; Spek, A. L.; van
Koten, G. J. Am. Chem. Soc. 1998, 120, 9688-9689. (b) Kronenburg, C.
M. P.; Jastrzebski, J. T. B. H.; van Koten, G. Polyhedron 2000, 19, 553-
555.
The magnesium halide from the metathesis reaction of CuBr
with PhMgBr has to be washed out thoroughly in order to avoid
side reactions. When MgBr2 was present during the transmeta-
lation reaction, not only did the sparingly soluble [(thf)3Ca(µ-
Ph)3Ca(thf)3][Ph-Cu-Ph] precipitate but also the black solution
still contained phenyl groups. After workup procedures,11
[{(thf)2Ca(Ph)Br}3‚MgO] (2) with an oxygen-centered MgCa3
tetrahedron precipitated at low temperatures in the shape of
colorless crystals. The oxygen stems from ether cleavage, as
described earlier.13,15 Heterobimetallic Mg-Ca organometallic
compounds are rare, and examples include R2N-Ca(µ-NR2)2-
Mg-NR2 with R ) SiMe3.30 The molecular structure of 2 is
(23) Hope, H.; Olmstead, M. M.; Power, P. P.; Sandell, J.; Xu, X. J.
Am. Chem. Soc. 1985, 107, 4337-4338.
(24) (a) Kronenburg, C. M. P.; Amijs, C. H. M.; Jastrzebski, J. T. B. H.;
Lutz, M.; Spek, A. L.; van Koten, G. Organometallics 2002, 21, 4662-
4671. (b) Kronenburg, C. M. P.; Jastrzebski, J. T. B. H.; Boersma, J.; Lutz,
M.; Spek, A. L.; van Koten, G. J. Am. Chem. Soc. 2002, 124, 11675-
11683.
(25) X-ray structure determination of 1: intensity data were collected
on a Nonius Kappa CCD diffractometer using graphite-monochromated Mo
KR radiation. Data were corrected for Lorentz-polarization and for
absorption effects. Crystallographic data as well as structure solution and
refinement details for 1: C54H73Ca2CuO6, Mr ) 961.82, colorless prism,
size 0.04 × 0.04 × 0.03 mm3, monoclinic, space group C2/c, a ) 22.5330-
(7) Å, b ) 11.2561(4) Å, c ) 20.6374(6) Å, â ) 91.917(2)°, V ) 5231.4-
(3) Å3, T ) -90 °C, Z ) 4, Fcalcd ) 1.221 g cm-3, µ(Mo KR) ) 6.59
cm-1, multiscan, minimum/maximum transmission 0.8898/0.9198, F(000)
) 2056, 18 399 reflections in h (-29 to +29), k (-14 to +12), l (-26 to
(26) Hitchcock, P. B.; Khvostov, A. V.; Lappert, M. F. J. Organomet.
Chem. 2002, 663, 263-268.
(27) Thoennes, D.; Weiss, E. Chem. Ber. 1978, 111, 3726-3731.
(28) Markies, P. R.; Schat, G.; Akkerman, O. S.; Bickelhaupt, F.; Smeets,
W. J. J.; van der Sluis, P.; Spek, A. L. J. Organomet. Chem. 1990, 393,
315-331.
+26), measured in the range 2.72° e θ e 27.51°, completeness θmax
)
99.5%, 6000 independent reflections, Rint ) 0.0545, 3943 reflections with
Fo > 4σ(Fo), 287 parameters, 0 restraints, R1(obsd) ) 0.0488, wR2(obsd)
) 0.1136, R1(all) ) 0.090, wR2(all) ) 0.1316, GOF ) 1.010, largest
(29) Wehmschulte, R. J.; Twamley, B.; Khan, M. A. Inorg. Chem. 2001,
40, 6004-6008.
difference peak/hole 0.547/-0.429 e Å-3
.