10.1002/adsc.201701610
Advanced Synthesis & Catalysis
Viswanadhan, J. J. Wendoloski, J. Comb. Chem. 1999,
1, 55; c) S. D. Roughley, A. M. Jordan, J. Med. Chem.
2011, 54, 3451.
cleavage of the N-O bond of ketoxime acetates,
generating of N-centered iminyl radicals. This
strategy provides an efficient and alternative method
for the synthesis of biologically useful quinoline-4-
carboxamide derivatives from ketoxime acetates and
isatins. The reaction was accomplished through N-
O/C-N bond cleavages and new C-C/C-N bond
formations, along with the activation of Csp3-H bond.
Importantly, this work provides an example for
applying molecular iodine as a promising alternative
to transition metal catalysts for single-electron
reduction coupling reactions. Detailed mechanistic
investigations and exploring new transformations of
oxime acetates with molecular iodine are underway in
our laboratory and will be reported in due course.
[4] a) C. L. Allen, J. M. J. Williams, Chem. Soc. Rev. 2011,
40, 3405; b) R. M. de Figueiredo, J.-S. Suppo, J.-M.
Campagne, Chem. Rev. 2016, 116, 12029; c) A. Ojeda-
Porras, D. Gamba-Sánchez, J. Org. Chem. 2016, 81,
11548.
[5] For representative reviews, see: a) D. J. C. Constable, P.
J. Dunn, J. D. Hayler, G. R. Humphrey, Jr. J. L. Leazer,
R. J. Linderman, K. Lorenz, J. Manley, B. A. Pearlman,
A. Wells, A. Zaks, T. Y. Zhang, Green Chem. 2007, 9,
411; b) E. Valeur, M. Bradley, Chem. Soc. Rev. 2009,
38, 606; c) A. Khalafi-Nezhad, A. Parhami, M. N. S.
Rad, A. Zarea, Tetrahedron Lett. 2005, 46, 6879.
[6] a) R. García-Álvarez, P. Crochet, V. Cadierno, Green
Chem. 2013, 15, 46; b) T. Hirano, K. Uehara, K.
Kamata, N. Mizuno, J. Am. Chem. Soc. 2012, 134,
6425.
Experimental Section
General Procedure (3a as an example): A mixture of oxime
acetates 1a (0.5 mmol), indoline-2,3-dione 2a (0.5 mmol),
iodine (0.25 mmol), and Et3N (0.25 mmol) in PhCl (2 mL)
[7] P. Crochet, V. Cadierno, Chem. Commun. 2015, 51,
2495.
o
was stirred at 130 C. After disappearance of the reactant
(monitored by TLC), and added 50 mL water to the
mixture, then extracted with EtOAc 3 times (3 × 50 mL).
The extract was washed with 10% Na2S2O3 solution (w/w),
dried over anhydrous Na2SO4 and evaporation. The residue
was purified by column chromatography on silica gel
(eluent: petroleum ether/EtOAc) to afford the product 3a
as a yellow solid; yield: 86%.
[8] a) X.-F. Wu, H. Neumann, M. Beller, Chem. Eur. J.
2010, 16, 9750; b) X.-F. Wu, H. Neumann, M. Beller,
Chem. Eur. J. 2012, 18, 419; c) R. S. Mane, B. M.
Bhanage, RSC Adv. 2015, 5, 76122; d) D. U. Nielsen, R.
H. Taaning, A. T. Lindhardt, T. M. Gøgsig, T.
Skrydstrup, Org. Lett. 2011, 13, 4454.
[9] a) R. R. Naredla, D. A. Klumpp, Tetrahedron Lett.
2012, 53, 4779; b) D. P. Chakraborty, A. K. Mandal, S.
K. Roy, Synthesis 1981, 977.
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (Grant 21602070). We also acknowlege the
University Key Research Projects of Henan Province (Grant
16A150022).
[10] a) L. Cao, J. Ding, M. Gao, Z. Wang, J. Li, A. Wu,
Org. Lett. 2009, 11, 3810; b) C. Tang, N. Jiao, Angew.
Chem. 2014, 126, 6646; Angew. Chem. Int. Ed. 2014,
53, 6528; c) P. Sathyanarayana, A. Upare, O. Ravi, P.
R. Muktapuram, S. R. Bathula, RSC Adv. 2016, 6,
22749; d) K. Rajendar, R. Kant, T. Narender, Adv.
Synth. Catal. 2013, 355, 3591; e) M. Sharif, J. Chen,
P. Langer, M. Beller, X.-F. Wu, Org. Biomol. Chem.
2014, 12, 6359; f) M. Sharif, J.-L. Gong, P. Langer,
M. Beller, X.-F. Wu, Chem. Commun. 2014, 50,
4747; g) Q. Song, Q. Feng, K. Yang, Org. Lett. 2014,
16, 624; h) K. S. Vadagaonkar, H. P. Kalmode, S.
Prakash, A. C. Chaskar, Synlett 2015, 26, 1677; i) S.
Shimokawa, Y. Kawagoe, K. Moriyama, H. Togo,
Org. Lett. 2016, 18, 784.
References
[1] a) C. L. Allen, B. N. Atkinson, J. M. J. Williams,
Angew. Chem. 2012, 124, 1412; Angew. Chem. Int. Ed.
2012, 51, 1383; b) M. Zhang, S. Imm, S. Bähn, L.
Neubert, H. Neumann, M. Beller, Angew. Chem. 2012,
124, 3971; Angew. Chem. Int. Ed. 2012, 51, 3905; c)
X.-F. Wu, M. Sharif, J.-B. Feng, H. Neumann, A.
Pews-Davtyan, P. Langer, M. Beller, Green Chem.
2013, 15, 1956; d) X.-F. Wu, H. Neumann, M. Beller,
Chem. Asian J. 2010, 5, 2168; e) M. Zheng, L. Huang,
H. Huang, X. Li, W. Wu, H. Jiang, Org. Lett. 2014, 16,
5906; f) S. A. Rossi, K. W. Shimkin, Q. Xu, L. M.
Mori-Quiroz, D. A. Watson, Org. Lett. 2013, 15, 2314;
g) S. M. Kim, D. Lee, S. H. Hong, Org. Lett. 2014, 16,
6168; h) C. Xie, X. Han, J. Gong, D. Li, C. Ma, Org.
Biomol. Chem. 2017, 15, 5811; i) R. Sakamoto, S.
Sakurai, K. Maruoka, Chem. Commun. 2017, 53, 6484.
[11] a) J. W. Kim, K. Yamaguchi, N. Mizuno, Angew.
Chem. 2008, 120, 9389; Angew. Chem. Int. Ed. 2008,
47, 9249; b) Y. Wang, H. Kobayashi, K. Yamaguchi,
N. Mizuno, Chem. Commun. 2012, 48, 2642; c) X.-F.
Wu, C. B. Bheeter, H. Neumann, P. H. Dixneuf, M.
Beller, Chem. Commun. 2012, 48, 12237 and
references cited therein.
[2] a) J. S. Carey, D. Laffan, C. Thomson, M. T. Williams,
Org. Biomol. Chem. 2006, 4, 2337; b) J. R. Dunetz, J.
Magano, G. A. Weisenburger, Org. Process Res. Dev.
2016, 20, 140.
[12] a) C. Chen, S. H. Hong, Org. Biomol. Chem. 2011, 9,
20; b) Z. Zhao, T. Wang, L. Yuan, X. Hu, F. Xiong, J.
Zhao, Adv. Synth. Catal. 2015, 357, 2566; c) Y. Wang,
K. Yamaguchi, N. Mizuno, Angew. Chem. 2012, 124,
7362; Angew. Chem. Int. Ed. 2012, 51, 7250; d) K.
Yamaguchi, H. Kobayashi, T. Oishi, N. Mizuno,
[3] a) H. Lundberg, F. Tinnis, N. Selander, H. Adolfsson,
Chem. Soc. Rev. 2014, 43, 2714; b) A. K. Ghose, V. N.
4
This article is protected by copyright. All rights reserved.