Scheme 1. Proposed Route to Optically Enriched
R-Aminoacids
Figure 1. Cinchona derivatives tested in decarboxylative proto-
nations.
As a part of our program on the synthesis of a selective
M2 muscarinic receptor antagonist6 and on the development
of new eco-friendly approaches to amino acid derivatives,
we became involved in enantioselective organocatalyzed
decarboxylative protonation.7 This methodology was used
for the preparation of enantioenriched pipecolic ester (72%
ee) on a multigram scale in good yield and mild conditions,
with 9-epi-cinchonine as the most efficient catalyst (10%
amount).5c
Recently, urea/thiourea-based bifunctional catalysts have
emerged as powerful catalysts in a wide range of asymmetric
transformations.8 Their high activity as well as their selectiv-
ity were assigned to their ability to activate both electrophilic
and nucleophilic centers of the reacting partners. Since
cinchona alkaloid derivatives were successfully used in
previous decarboxylative protonations5 we anticipated that
the urea/thiourea bases 1-6 (Figure 1) would afford the
conformational rigidity required for high selectivity.9 The
amine function could act as a chiral proton shuttle whereas
the urea/thiourea group, a strong hydrogen-bond donor,
would anchor the substrate to bring the chiral protonating
agent in a close proximity to the prochiral enolate. We report
here unprecedented enantioselectivities for metal-free de-
carboxylative protonations carried out in the presence of urea/
thiourea cinchona bases 1-6.
Compounds 1-6 derived from cinchona alkaloids were
prepared according to the described methods.9 They were
tested in a 1:1 ratio with substrate 7a in THF at room
temperature (Scheme 2). First, urea 1 afforded 7b with a
Scheme 2. (Thio)ureas Mediated
Decarboxylation-Protonation of Hemimalonic Esters
(3) (a) Miyamoto, K.; Ohta, H. J. Am. Chem. Soc. 1990, 112, 4077-
4078. (b) Sugai, T.; Ohta, H. Chem. Commun. 2000, 1519-1520. (c)
Matoishi, K.; Ueda, M.; Miyamoto, K.; Ohta, H. J. Mol. Catal. B: Enzym.
2004, 27, 161-168. (d) Ijima, Y.; Matoishi, K.; Terao, Y.; Doi, N.;
Yanagawa, H.; Ohta, H. Chem. Commun. 2005, 877-879. (e) Terao, Y.;
Ijima, Y.; Miyamoto, K.; Ohta, H. J. Mol. Catal. B: Enzym. 2007, 45, 15-
20.
(4) Mohr, J. T.; Nishimata, T.; Behenna, D. C.; Stoltz, B. M. J. Am.
Chem. Soc. 2006, 128, 11348-11349.
(5) (a) Brunner, H.; Schmidt, P. Eur. J. Org. Chem. 2000, 2119-2133.
(b) Brunner, H.; Baur, M. A. Eur. J. Org. Chem. 2003, 2854-2862. (c)
Seitz, T.; Baudoux, J.; Bekolo, H.; Cahard, D.; Plaquevent, J.-C.; Lasne,
M.-C.; Rouden, J. Tetrahedron 2006, 62, 6155-6165.
(6) (a) Martin, J.; Deagostino, A.-M.; Perrio, C.; Dauphin, F.; Ducandas,
C.; Morin, C.; Desbe`ne, P.-L.; Lasne, M.-C. Bioorg. Med. Chem. 2000, 8,
591-601. (b) Martin, J.; Lasne, M.-C.; Plaquevent, J.-C.; Duhamel, L.
Tetrahedron Lett. 1997, 38, 7181-7182.
(7) Rogers, L. M.-A.; Rouden, J.; Lecomte, L.; Lasne, M.-C. Tetrahedron
Lett. 2003, 44, 3047-3050.
(8) Selected bifunctional organocatalysis: (a) Okino, T.; Hoashi, Y.;
Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672-12673. (b) Okino, T.;
Nakamura, Y.; Furukawa, T.; Takemoto, Y. Org. Lett. 2004, 6, 625-627.
(c) Hoashi, Y.; Okino, T.; Takemoto, Y. Angew. Chem., Int. Ed. 2005, 44,
4032-4035. (d) Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X. N.; Takemoto,
Y. J. Am. Chem. Soc. 2005, 127, 119-125. (e) Li, H. M.; Wang, Y.; Tang,
L.; Deng, L. J. Am. Chem. Soc. 2004, 126, 9906-9907. (f) Li, H.; Wang,
Y.; Tang, L.; Wu, F.; Liu, X.; Guo, C.; Foxman, B. M.; Deng, L. Angew.
Chem., Int. Ed. 2005, 44, 105-108. (g) Li, H.; Song, J.; Liu, X.; Deng, L.
J. Am. Chem. Soc. 2005, 127, 8948-8849. (h) Matsui, K.; Takizawa, S.;
Sasai, H. J. Am. Chem. Soc. 2005, 127, 3680-3681. (i) Shi, M.; Chen, L.
H.; Li, C. Q. J. Am. Chem. Soc. 2005, 127, 3790-3800. (j) Berkessel, A.;
Cleemann, F.; Mukherjee, S.; Muller, T. N.; Lex, J. Angew. Chem., Int.
Ed. 2005, 44, 807-811.(k) Berkessel, A.; Mukherjee, S.; Cleemann, F.;
Muller, T. N.; Lex, L Chem. Commun. 2005, 1898-1900. (l) Lattanzi, A.
Org. Lett. 2005, 7, 2579-2582.
low 24% ee (Table 1, entry 1) as expected from literature
precedent.9c By using the corresponding thiourea 2, pipeco-
late 7b was obtained in 80% yield and 64% ee (entry 2).
Encouraged by this result, we screened the thioureas 3-6
in the decarboxylation of 7a under similar reaction condi-
tions, varying only the temperature and time. Increasing the
temperature led to a decrease of the selectivity (entries 3
and 4). This result contrasts with those observed when the
reaction was catalyzed by cinchona alkaloids,5 the enantio-
selectivities being independent from the temperature, high-
lighting here the role of hydrogen bonding with thiourea-con-
2622
Org. Lett., Vol. 9, No. 14, 2007