R. Ferraccioli et al. / Tetrahedron: Asymmetry 18 (2007) 1475–1480
1479
(DMSO-d6, 80 ꢁC): d = 0.97 (t, J = 7.4 Hz, 3H), 1.16 (t,
4.4. Computational details
J = 7.5 Hz, 3H), 1.60–1.73 (m, 1H), 1.94–2.44 (m, 1H),
2.53–2.88 (m, 5H), 3.13 (dd, J = 16.0, 7.3 Hz, 1H), 3.58
(s, 3H), 3.72–3.83 (m, 1H), 5.05 (d, J = 12.6 Hz, 1H),
5.13 (d, J = 12.6 Hz, 1H), 6.05 (dd, J = 12.0, 4.9 Hz, 1H),
7.06–7.10 (m, 2H), 7.17 (t, J = 7.5 Hz, 1H), 7.34–7.37
(m, 5H). 13C NMR (DMSO-d6): d = 10.2, 15.5, 24.3,
30.0, 31.6, 39.0, 49.1, 51.4, 53.6, 66.5, 125.9, 126.6, 127.4,
127.7, 128.3, 134.5, 136.0, 136.7, 138.6, 156.1, 170.4.
HRMS (ESI) m/z: [M+Na]+ calcd for C24H29NO4Na,
418.19888; found, 418.19855.
The geometry of 4c and 4t was fully optimized at the AM1
level.13 It was verified that structures 4c and 4t correspond
to energy minima by the absence of negative eigenvalues of
the Hessian matrix. The geometry of TS1 and TS2 was
fully optimized at the AM1 level. Transition states TS1
and TS2 were confirmed by harmonic analysis, each one
having a negative eigenvalue. All computations were car-
ried out by the HYPERCHEM suite implemented in the
Hyperchem 7.04 Professional package of programs, Hyper-
cube, 2002.
4.3.4.
methyl-1,2,3,4-tetrahydroisoquinoline-2-carboxylic
(1S,3R)-3-Ethyl-8-isopropyl-1-methoxycarbonyl-
acid
20
benzyl ester (4c, R1 = i-Pr; R2 = Et). Dense oil; ½a
¼
D
Acknowledgments
ꢀ9:2 (c 1.2, MeOH). IR (neat, cmꢀ1): 3031, 2962, 2929,
1739, 1695. 1H NMR (DMSO-d6, 80 ꢁC): d = 0.92 (t,
J = 7.5 Hz, 3H), 1.09 (d, J = 6.8 Hz, 3H), 1.21 (d,
J = 6.8 Hz, 3H), 1.59–1.75 (m, 1H), 1.95–2.07 (m, 1H),
2.55 (dd, J = 15.8, 7.5 Hz, 1H), 2.77–2.90 (m, 2H), 3.10–
3.22 (m, 2H), 3.58 (s, 3H), 3.72–3.82 (m, 1H), 5.02–5.15
(m, 2H), 6.15 (dd, J = 9.0, 5.0 Hz, 1H), 7.06 (br d, 1H),
7.16–7.24 (m, 2H), 7.31–7.37 (m, 5H). 13C NMR
(DMSO-d6): d = 10.0, 22.6, 24.7, 27.8, 30.7, 31.7, 39.3,
48.7, 51.3, 53.6, 66.5, 123.2, 125.7, 127.5, 127.6, 127.7,
128.2, 134.4, 135.7, 136.6, 143.1, 156.4, 170.3. HRMS
(ESI) m/z: [M+Na]+calcd for C25H31NO4Na, 432.21453;
found, 432.21378.
We thank Professor M. Catellani, University of Parma, for
helpful discussion. We are grateful to Consiglio Nazionale
delle Ricerche (CNR) and MIUR for financial support.
References
1. For reviews, see: (a) Tietze, L. F. Chem. Rev. 1996, 96, 115–
`
136; (b) Ramon, D. J.; Yus, M. Angew. Chem., Int. Ed. 2005,
44, 1602–1634; (c) Multicomponent Reactions; Zhu, J., Bien-
`
ayme, H., Eds.; Wiley VCH: Weinheim, 2005; (d) Guillena,
`
G.; Ramon, D. J.; Yus, M. Tetrahedron: Asymmetry 2007, 18,
693–700.
4.3.5. (1R,3S)-3-Benzyl-1-methoxycarbonylmethyl-8-meth-
yl-1,2,3,4-tetrahydroisoquinoline-2-carboxylic acid benzyl
2. Representative examples of multicomponent Pd-catalyzed
synthesis of heterocycles: (a) Grigg, R.; Khamnaen, T.;
Rajviroongit, S.; Sridharan, V. Tetrahedron Lett. 2002, 43,
2601–2603; (b) Balme, G.; Bossharth, E.; Monteiro, N. Eur.
J. Org. Chem. 2003, 4101–4111; (c) Abbiati, G.; Arcadi, A.;
Canevari, V.; Capezzuto, L.; Rossi, E. J. Org. Chem. 2003,
70, 6454–6460; (d) Pache, S.; Lautens, M. Org. Lett. 2003, 5,
4827–4830; (e) Dhawan, R.; Arndtsen, B. A. J. Am. Chem.
Soc. 2004, 126, 468–469; (f) Dondas, H. A.; Fishwick, C. W.
G.; Gai, X.; Grigg, R.; Kilner, C.; Dumrongchai, N.;
Kongkatathip, N.; Polysuk, C.; Sridharan, V. Angew. Chem.,
20
ester (4c, R1 = Me; R2 = Bn). Dense oil; ½a ¼ ꢀ40:9 (c
D
1.00, MeOH). IR (neat, cmꢀ1): 3062, 3026, 2958, 2855,
1739, 1696. 1H NMR (DMSO-d6, 80 ꢁC): d = 2.30 (s,
3H), 2.57 (dd, J = 14.0, 6.0 Hz, 1H), 2.74–2.95 (m, 4H),
3.36 (dd, J = 13.0, 3.1 Hz, 1H), 3.60 (s, 3H), 4.00 (m,
1H), 5.12 (d, J = 12.0 Hz, 1H), 5.15 (d, J = 12.0 Hz, 1H),
6.03 (dd, J = 9.2, 5.7 Hz, 1H), 6.95 (d, J = 6.3 Hz, 1H),
7.00–7.11 (m, 2H), 7.24–7.44 (m, 10H). 13C NMR
(DMSO-d6): d = 18.3, 32.1, 39.2, 50.2, 51.9, 54.9, 67.4,
126.2, 126.8, 127.8, 128.4, 128.7, 128.9, 129.6, 133.1,
134.6, 137.2, 138.9, 155.6, 171.0. HRMS (ESI) m/z:
[M+Na]+ calcd for C28H29NO4Na, 446.19888; found,
446.19892.
`
Int. Ed. 2005, 44, 7570–7574; (g) Barluenga, J.; Jimenez-
Aquino, A.; Valdes, C.; Aznar, F. Angew. Chem., Int. Ed.
2007, 46, 1529–1532.
`
3. For reviews on 1,2,3,4-tetrahydroisoquinolines and recent
examples of the synthesis of 1,3-substituted derivatives, see:
(a) Scott, J. D.; Williams, R. M. Chem. Rev. 2002, 102, 1669–
1730; (b) Chrzanowska, M.; Rozwadowska, M. D. Chem.
Rev. 2004, 104, 3341–3370; (c) Kaufman, T. S. Synthesis
2005, 339–360; (d) Magnus, P.; Matthews, K. S.; Lynch, V.
Org. Lett. 2003, 2181–2184; (e) Eustache, J.; Van de Weghe,
P.; Le Nouen, D.; Uyehara, H.; Kabuto, C.; Yamamoto, Y.
J. Org. Chem. 2005, 70, 4043–4053.
4. Ferraccioli, R.; Carenzi, D.; Catellani, M. Tetrahedron Lett.
2004, 45, 6903–6907.
5. (a) Catellani, M.; Frignani, P.; Rangoni, A. Angew. Chem.,
Int. Ed. 1997, 36, 119–122; (b) Catellani, M.; Cugini, F.
Tetrahedron 1999, 55, 6595–6602; (c) Catellani, M. Synlett
2003, 298–313.
4.3.6.
methyl-1,2,3,4-tetrahydroisoquinoline-2-carboxylic
(1R,3S)-3-Isobutyl-1-methoxycarbonylmethyl-8-
acid
benzyl ester (4c, R1 = Me; R2 = i-Bu). Dense oil;
20
½a ¼ þ15:3 (c 0.98, MeOH). IR (neat, cmꢀ1): 2954,
D
1
2870, 1740, 1696. H NMR (DMSO-d6, 80 ꢁC): d = 0.88
(d, J = 6.3 Hz, 3H), 0.94 (d, J = 6.3 Hz, 3H), 1.50–1.60
(m, 1H), 1.75–1.85 (m, 2H), 2.3 (s, 3H), 2.62 (dd,
J = 14.4, 5.4 Hz, 1H), 2.76–2.84 (m, 2H), 3.14 (dd,
J = 15.9, 7.5 Hz, 1H), 3.57 (s, 3H), 3.50–4.04 (m, 1H),
5.03 (d, J = 12.6 Hz, 1H), 5.14 (d, J = 12.6 Hz, 1H), 5.98
(dd, J = 9.6, 5.4 Hz, 1H), 7.04–7.15 (m, 3H), 7.32–7.36
(m, 5 H). 13C NMR (DMSO-d6): d = 17.7, 20.9, 23.9,
24.1, 32.2, 38.4, 49.5, 50.3, 51.3, 66.5, 125.9, 127.1, 127.8,
128.0, 128.2, 132.5, 134.2, 136.8, 157.6, 170.4. HRMS
(ESI) m/z: [M+Na]+ calcd for C25H31NO4Na, 432.21453;
found, 432.21404.
6. For examples of palladium-catalyzed C–H activation, see: (a)
Dyker, G. Angew. Chem., Int. Ed. 1999, 38, 1699–1712; (b)
Karig, G.; Moon, M. T.; Thasana, N.; Gallagher, T. Org.
Lett. 2002, 4, 3115–3118; (c) Huang, Q.; Fazio, A.; Dai, G.;
Campo, M. A.; Larock, R. C. J. Am. Chem. Soc. 2004, 126,
7460–7461.