Published on Web 11/16/2007
Mechanistic Studies of Copper(I)-Catalyzed Allylic Amination
Radhey S. Srivastava,*,† Nathan R. Tarver,† and Kenneth M. Nicholas‡
Contribution from the Department of Chemistry, UniVersity of Louisiana at Lafayette,
Louisiana 70504, and Department of Chemistry and Biochemistry, UniVersity of Oklahoma,
Norman, Oklahoma 73109
Received July 10, 2007; E-mail: rss1805@louisiana.edu
Abstract: The reactions of nitrosobenzene and N,N′-diethyl-4-nitrosoaniline with [Cu(CH3CN)4]PF6 provide
novel Cu(I) complexes, [Cu(PhNO)3]PF6 (1) and [Cu(Et2NPhNO)3]PF6 (2); in 2 the copper atom is
N-coordinated to the nitrosoarenes in a distorted trigonal planar geometry. Complex 1 is strongly implicated
as a reactive intermediate in the Cu(I)-catalyzed allylic amination of olefins based on (i) its isolation from
the catalytic reaction, (ii) its stoichiometric regioselective allylic amination of R-methyl styrene (AMS), (iii)
the non-involvement of free PhNO in its amination of AMS, and (iv) its function as a catalyst for the amination
of alkenes from phenylhydroxylamine. The reaction between AMS and 1 (80 °C, dioxane) is first order in
both alkene and 1. Relative rate studies of the reaction of 1 with para substituted AMS derivatives gives
a Hammett F value of -0.035. Alkene adducts isolated from the reaction of 1 with styrene and
R-methylstyrene are formulated as [(PhNO)3Cu(η2-alkene)]PF6 (7,8) on the basis of spectroscopic
characterization and thermolysis. PM3 and DFT MO calculations support the role of [(alkene)Cu(RNO)3]+
and (η1- or η3-allyl)Cu(RNO)2(RNHOH)+ complexes as probable catalytic intermediates and address the
origin of the distinctive reaction regioselectivity. A mechanistic scheme is proposed which is consistent
with the accumulated experimental and computational results.
lamines (Scheme 1). Nitroarene-16 and aminoarene-based,17
metal-catalyzed allylic aminations have also been developed by
Introduction
Catalytic reactions that transfer an -NR group with C-H
insertion can convert hydrocarbons into valuable amines. The
development of new catalytic reactions for the efficient synthesis
of allyl amines from inexpensive feedstocks, remains an enticing
goal in both industry and in the laboratory, owing to the
importance of these amines as intermediates in organic synthesis
and as useful end-products.1-5 Convenient methods for direct
allylic amination have been sought, including alkene reactions
with S/Se-imido reagents6,7 and ene-reactions with azo-,8
N-carboalkoxynitroso-,9 and N-sulfinylcarbamate derivatives.10
Transition-metal-promoted allylic amination of unsaturated
hydrocarbons presents an attractive alternative means to func-
tionalize olefins via C-N bond formation.11,12 We and others
contributed to the early development of Mo(VI)13 and Fe(II,-
III)14,15-catalyzed allylic amination of alkenes by aryl hydroxy-
us and the Cenini/Ragaini group. More recently, we18 and a
Chinese group19 independently found that the Cu-catalyzed
reactions of olefins with aryl hydroxylamines produce moderate
(6) (a) Sharpless, K. B.; Hori, T. J. Org. Chem. 1976, 41, 176. (b) Kresze, G.;
Braxmeier, H.; Munsterer, H. Org. Synth. 1987, 65, 159. (c) Katz, T. J.;
Shi, S. J. Org. Chem. 1994, 59, 8297.
(7) (a) Sharpless, K. B.; Hori, T.; Truesdale, L. K.; Dietrich, C. O. J. Am.
Chem. Soc. 1976, 98, 269. (b) Bruncko, M.; Khuong, T. A. V.; Sharpless,
K. B. Angew. Chem., Int. Ed. Engl. 1996, 35, 454.
(8) Brimble, M. A.; Heathcock, C. H. J. Org. Chem. 1993, 58, 5261. Leblanc,
Y.; Zamboni, R.; Bernstein, M. A. J. Org. Chem. 1991, 56, 1971.
(9) Keck, G. E.; Webb, R. R.; Yates, J .B. Tetrahedron 1981, 37, 4007. Knight,
G. T. Chem. Commun. 1970, 1016. Bank, R. E.; Hazeldine R. N.; Miller,
P. J. Tetrahedron Lett. 1970, 4417.
(10) Whitesell, J. K.; Yaser, H. K. J. Am. Chem. Soc. 1991, 113, 3526.
(11) Hong, S.; Marks, T. J. Acc. Chem. Res. 2004, 37, 673. Pohlki, F.; Doye, S.
Chem. Soc. ReV. 2003, 32, 104. Kolb, H. C.; Sharpless, K. B. Transition
Met. Org. Synth. 1998, 2, 243. Mueller, P.; Fruit, C. Chem. ReV. 2003,
103, 2905. Katsuki, T. Comp. Coord. Chem. 2 2004, 9, 207.
(12) Jorgensen, K. A. In Modern Amination Methods; Ricci, A., Ed.; Wiley-
VCH: Weinheim, Germany, 2000; Chapter 1, p 1-35.
† University of Louisiana at Lafayette.
(13) (a) Srivastava, A.; Ma, Y.; Pankayatselvan, R.; Dinges, W.; Nicholas, K.
M. J. Chem. Soc., Chem. Commun. 1992, 853. (b) Srivastava, R. S.;
Nicholas, K. M. J. Org. Chem. 1994, 59, 5365.
‡ University of Oklahoma.
(1) Jacobson, A. E; May, E. L.; Sargent, L. J. In Medicinal Chemistry; Burger,
A., Ed.; Wiley: New York, 1970; Vol. 2, Chapter 49, pp 1330-1350.
Lednicer, D.; Mitscher, L. A. In Medicinal Chemistry; Burger, A., Ed.;
Wiley: New York, 1984; Vol. 3, pp 116, 190.
(14) (a) Srivastava, R. S.; Nicholas, K. M. Tetrahedon Lett. 1994, 35, 8739. (b)
Srivastava, R. S.; Khan, M. A.; Nicholas, K. M. J. Am. Chem. Soc. 1996,
118, 3311. (c) Srivastava, R. S.; Nicholas, K. M. J. Am. Chem. Soc. 1997,
119, 3302. (d) Singh, S.; Nicholas, K. M. Synth. Commun. 2001, 31, 3087.
(15) Johannsen, M.; Jorgensen, K. A. J. Org. Chem. 1994, 59, 214.
(16) Srivastava, R. S.; Nicholas, K. M. Chem. Commun. 1998, 2705. Kolel-
Veetil, M.; Khan, M. A.; Nicholas, K. M. Organometallics, 2000, 19, 3754.
Srivastava, R. S.; Nicholas, K. M. Tetrahedron Lett. 2002, 43, 931-934.
Cenini, S.; Ragaini, F.; Tollari, S.; Paone, D. J. Am. Chem. Soc. 1996,
118, 11964. Ragaini, F.; Cenini, S.; Tollari, S.; Tummolillo, G.; Beltrami,
R. Organometallics 1999, 18, 928.
(2) Comer, W. T.; Opomoll, A. W. In Medicinal Chemistry; Burger, A., Ed.;
Wiley: New York, 1970; Vol. 2, pp 1019-1064.
(3) Review: Ryder, N. S.; Stuetz, A.; Nussbaumer, P.ACS Symp. Ser. 1992,
6497, 192-204.
(4) Berdy, J.; Aszalos, A.; Bostian, M.; McNitt, K. L. Handbook of Antibiotic
Compounds; CRC Press, Boca Raton, FL, 1928; Vol. 1. Kennedy, J. F.;
White, C. A. BioactiVe Carbohydrates; Halstead Press: Chichester, England,
1983; pp 264-287.
(5) Myers, D. In Surfactant Science and Technology; VCH: Weinheim,
Germany, 1988; pp 20, 62-67. Kirk-Othmer Concise Encyclopedia of
Chemical Technology; Grayson, M., Ed.; Wiley and Sons: New York, 1985;
pp 82-87.
(17) Srivastava, R. S.; Nicholas, K. M. Chem. Commun. 1996, 2335.
(18) Hogan, G. A.; Gallo, A. A.; Nicholas, K. M.; Srivastava, R. S. Tetrahedron
Lett. 2002, 43, 9505.
(19) Ho, C.-M.; Lau, T.-C. New J. Chem. 2000, 24, 859.
9
15250
J. AM. CHEM. SOC. 2007, 129, 15250-15258
10.1021/ja0751072 CCC: $37.00 © 2007 American Chemical Society