Published on Web 10/25/2006
Modulation of the Catalytic Behavior of r-Chymotrypsin at
Monolayer-Protected Nanoparticle Surfaces
Chang-Cheng You, Sarit S. Agasti, Mrinmoy De, Michael J. Knapp, and
Vincent M. Rotello*
Contribution from the Department of Chemistry, UniVersity of Massachusetts, 710 North
Pleasant Street, Amherst, Massachusetts 01003
Received June 22, 2006; E-mail: rotello@chem.umass.edu
Abstract: Amino-acid-functionalized gold clusters modulate the catalytic behavior of R-chymotrypsin (ChT)
toward cationic, neutral, and anionic substrates. Kinetic studies reveal that the substrate specificity (kcat
/
KM) of ChT-nanoparticle complexes increases by ∼3-fold for the cationic substrate but decreases by 95%
for the anionic substrate as compared with that of free ChT, providing enhanced substrate selectivity.
Concurrently, the catalytic constants (kcat) of ChT show slight augmentation for the cationic substrate and
significant attenuation for the anionic substrate in the presence of amino-acid-functionalized nanoparticles.
The amino acid monolayer on the nanoparticle is proposed to control both the capture of substrate by the
active site and release of product through electrostatic interactions, leading to the observed substrate
specificities and catalytic constants.
Introduction
possessed by small molecule ligands: First, they may provide
large surface areas for efficient protein binding, as typically >6
nm2 of buried surface are involved in forming protein-protein
interfaces in nature.5 Second, multivalent functionalities can be
grafted on the materials to meet the structural complexity of
proteins. Among diverse nanoscale entities, monolayer-protected
nanoparticles are extremely attractive due to their ease of
synthesis and structural diversity and have found successful
applications in the interaction with proteins.6,7
Modulation of enzyme activity provides a potent means to
gain control over cellular processes such as signal transduction,
DNA replication, and metabolism. On the other hand, aberrant
activities of some enzymes can lead to the development of
numerous diseases and disorders including cancers and human
immunodeficiency virus (HIV) disease.1,2 From this point of
view, the modulation of enzyme activity is of great importance
in therapeutics and pharmaceutics.3 Synthetic small organic
molecules (e.g., most drugs) have been used to inhibit the
enzyme activity through the direct interaction with the active
sites of enzymes.4 Recent advances in nanoscale materials offer
a new pathway for regulating enzyme behavior through surface
interactions, providing a promising alternative to small molecule
inhibition. Nanomaterials possess at least two attributes not
As a representative serine protease, R-chymotrypsin (ChT)
provides an excellent enzyme model for studying the modulation
of activity due to its well-defined structure and extensively
characterized enzymatic properties.8 As illustrated in Figure 1a,
the active pocket of ChT is surrounded by a ring of positively
charged residues. Meanwhile, a number of hydrophobic “hot
spots” are distributed on the surface. Such structural features
allow the electrostatic interaction as well as hydrophobic
interaction with receptors possessing complementary surfaces.
(1) (a) Harris, B. E.; Song, R.; Soong, S. J.; Diasio, R. B. Cancer Res. 1990,
50, 197-201. (b) Belinsky, S. A.; Nikula, K. J.; Baylin, S. B.; Issa, J.-P.
J. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 4045-4050. (c) Burger, A. M.;
Double, J. A.; Newell, D. R. Eur. J. Cancer 1997, 33, 638-644. (d)
Armbruster, B. N.; Banik, S. S. R.; Guo, C. H.; Smith, A. C.; Counter C.
M. Mol. Cell. Biol. 2001, 21, 7775-5586.
(2) (a) Shultz, M. D.; Ham, Y.-W.; Lee, S.-G.; Davis, D. A.; Brown, C.;
Chmielewski, J. J. Am. Chem. Soc. 2004, 126, 9886-9887. (b) Overall, C.
M.; Lopez-Otin, C. Nat. ReV. Cancer 2002, 2, 657-672. (c) Esler, W. P.;
Wolfe, M. S. Science 2001, 293, 1449-1454. (d) Coussens, L. M.; Tinkle,
C. L.; Hanahan, D.; Werb, Z. Cell 2000, 103, 481-490.
(3) (a) Leung, D.; Abbenante, G.; Fairlie, D. P. J. Med. Chem. 2000, 43, 305-
341. (b) Aguiar, M.; Masse, R.; Gibbs, B. F. Drug Metab. ReV. 2005, 37,
379-404. (c) Miners, J. O.; Birkett, D. J. Br. J. Clin. Pharmacol. 1998,
45, 525-538.
(5) Lo Conte, L.; Chothia, C.; Janin, J. J. Mol. Biol. 1999, 285, 2177-2198.
(6) (a) Niemeyer, C. M. Angew. Chem., Int. Ed. 2001, 40, 4128-4158. (b)
Daniel, M.-C.; Astruc, D. Chem. ReV. 2004, 104, 293-346. (c) Katz, E.;
Willner, I. Angew. Chem., Int. Ed. 2004, 43, 6042-6108. (d) Verma, A.;
Rotello, V. M. Chem. Commun. 2005, 303-312. (e) Gu, H.; Xu, K.; Xu,
C.; Xu, B. Chem. Commun. 2006, 941-949. (f) You, C.-C.; Verma, A.;
Rotello, V. M. Soft Matter 2006, 2, 190-204.
(4) (a) Yin, F.; Cao, R.; Goddard, A.; Zhang, Y.; Oldfield, E. J. Am. Chem.
Soc. 2006, 128, 3524-3525. (b) Demaegdt, H.; Laeremans, H.; De Backer,
J.-P.; Mosselmans, S.; Le, M. T.; Kersemans, V.; Michotte, Y.; Vauquelin,
G.; Vanderheyden, P. M. L. Biochem. Pharmacol. 2004, 68, 893-900. (c)
Tan, Z.; Bruzik, K. S.; Shears, S. B. J. Biol. Chem. 1997, 272, 2285-
2290. (d) Campbell, D. R.; Kurzer, M. S. J. Steroid Biochem. Mol. Biol.
1993, 46, 381-388. (e) Kozikowski, A. P.; Sun, H.; Brognard, J.; Dennis,
P. A. J. Am. Chem. Soc. 2003, 125, 1144-1145. (f) Ding, K.; Lu, Y.;
Nikolovska-Coleska, Z.; Qiu, S.; Ding, Y.; Gao, W.; Stuckey, J.; Krajewski,
K.; Roller, P. P.; Tomita, Y.; Parrish, D. A.; Deschamps, J. R.; Wang, S.
J. Am. Chem. Soc. 2005, 127, 10130-10131.
(7) (a) Zheng, M.; Huang, X. J. Am. Chem. Soc. 2004, 126, 12047-12054.
(b) Xu, C.; Xu, K.; Gu, H.; Zhong, X.; Guo, Z.; Zheng, R.; Zhang, X.; Xu,
B. J. Am. Chem. Soc. 2004, 126, 3392-3393. (c) Abad, J. M.; Mertens, S.
F. L.; Pita, M.; Fernandez, V. M.; Schriffrin, D. J. J. Am. Chem. Soc. 2005,
127, 5689-5694. (d) Aubin-Tam, M.-E.; Hamad-Schifferli, K. Langmuir
2005, 21, 12080-12084. (e) Kogan, M. J.; Bastus, N. G.; Amigo, R.; Grillo-
Bosch, D.; Araya, E.; Turiel, A.; Labarta, A.; Giralt, E.; Puntes, V. F. Nano
Lett. 2006, 6, 110-115. (f) Ackerson, C. J.; Jadzinsky, P. D.; Jensen, G.
J.; Kornberg, R. D. J. Am. Chem. Soc. 2006, 128, 2635-2640.
(8) (a) Blow, D. M. Acc. Chem. Res. 1976, 9, 145-152. (b) Cassidy, C. S.;
Lin, J.; Frey, P. A. Biochemistry 1997, 36, 4576-4584.
9
14612
J. AM. CHEM. SOC. 2006, 128, 14612-14618
10.1021/ja064433z CCC: $33.50 © 2006 American Chemical Society