Oumar-Mahamat et al.
1587
Chem. 51, 4303 (1986); (l) R.A. Moss, K.W. Alwis, and J.-S.
Shin. J. Am. Chem. Soc. 106, 2651 (1984); (m) S.
Bhattacharaya and K. Snehalatha. J. Org. Chem. 62, 2198
(1997); (n) Y.Y. Kim, K.H. Lim, and M.N. Khan. Colloids
Surf. A, 121, 239 (1997); (o) I.S. Ryzhkima, R.A.
Shaqidullina, L.A. Ismaev, and I.B. Ivanov. Izv. Akad. Nauk,
Ser. Khim. 242 (1995); Chem. Abstr. 123, 83509e (1995).
DPPNPP (7) is an attractive model for study because its
spontaneous hydrolysis is slower than that of the more nox-
ious phosphorus materials such as the nerve agents (2e, f).
One expects that any catalyst capable of facilitating the hy-
drolysis of 7 should be effective for hydrolysis of the nerve
agents. However, where direct comparison can be made, al-
though certain catalysts (e.g., 4) exhibit spectacular rate en-
hancements with 7, their reactions with sarin and soman are
somewhat less spectacular, being ~20–80-fold over the
spontaneous hydrolysis (3d). Presumably this relates to dif-
ferences in partitioning of 7 and sarin or soman between the
aqueous and micellar pseudophase in which the catalytic en-
tity resides, and TS energy differences for that reaction rela-
tive to cleavage of PNPDPP. In a given case the true test for
a decontaminant is, of course, its reaction with the more
noxious agent, and it remains to be determined how effica-
cious the 6b–polyol systems are in this respect.
4. (a) J.M. Brown, C.A. Bunton, S. Diaz, and Y. lham. J. Org.
Chem. 45, 4169 (1980); (b) C.A. Bunton and L.G. Ionescu. J.
Am. Chem. Soc. 95, 2912 (1973); (c) C.A. Bunton, L. Robin-
son, and M. Stam. J. Am. Chem. Soc. 92, 7393 (1970);
(d) J.M. Brown, C.A. Bunton, and S. Diaz. J. Chem. Soc.
Chem. Commun. 971, (1974); (e) J. Epstein, J.J. Kaminski, N.
Bodor, R. Enever, J...Sowa, and T. I-Iiguchi. J. Org. Chem. 43,
2816 (1978); (f) C.A. Bunton, A.A. Kamego, M.J. Minch, and
J.L. Wright. J. Org. Chem. 40, 1321 (1975); (g). F.M. Menger
and R.A. Persichetti. J. Org. Chem. 52, 3451 (1987); (h) C.A.
Bunton and S. Diaz. J. Am. Chem. Soc. 98, 5663 (1976);
(i) Ch. Rav-Acha, M. Chevion, J. Katzhendler, and J. Sarel. J.
Org. Chem. 43, 591 (1978); (j) T. Kunitake, S. Shinkai, and Y.
Okahata. Bull. Chem. Soc. Jpn. 49, 540 (1976); (k) T.
Kunitake, Y. Okahata, and T. Sakamoto. J. Am. Chem. Soc.
98, 7799 (1976); R.A. Moss, R.C. Nahas, and S. Ramaswami.
J. Am. Chem. Soc. 99, 627 (1977); (m) R.A. Moss, T.J. Lucas,
and R.C. Nahas. J. Am. Chem. Soc. 100, 5920 (1978); (n)
C.D. Gutsche and G.C. Mei. J. Am. Chem. Soc. 107, 7964
(1985); (o) F.M. Menger and L.G. Whitesell. J. Am. Chem.
Soc. 107, 707 (1985); (p) C.A. Bunton and G. Savelli. Adv.
Phys. Org. Chem. 22, 213 (1986), and refs. therein; (q) S.
Bhattacharaya and K. Snehalatha. Langmuir, 11, 4653 (1995);
(r) L.G. Ionescu and E. Fatima de Souza. Surfactant Sci. Ser.
64 123 (1996).
5. (a) Y. Okahata, H. Ihara, and T. Kunitake. Bull. Chem. Soc.
Jpn. 54, 2072 (1981); (b) R.A. Moss and Y. Ihara. J. Org.
Chem. 48, 588 (1983); (c) R.A. Moss and S. Ganguli. Tetrahe-
dron Lett. 30, 2071 (1989); (d) R.A. Moss, P. Scrimin, S.
Bhattacharya, and S. Swarup. J. Am. Chem. Soc. 109, 6209
(1987), and refs. therein.
6. (a) R.A. Mackay, F.R. Longo, B.L. Knier, and H.D. Durst. J.
Phys. Chem. 91, 861 (1987); (b) A.R. Katritzky, B.L. DueIl,
H.D. Durst, and B.L. Knier. Tetrahedron Lett. 28, 3899 (1987);
(c) J. Org. Chem. 53, 3972 (1988); (d) R.A. Moss, K. Brachen,
and T.J. Emge. In Proc. ERDEC Sci.: Conf. Chem. Biol. Def.
Res. Edited by D.A. Berg. 413 (1995); (e) R.A. Moss, A.T.
Kotchevar, B.D. Park, and P. Scrimin. Langmuir, 12, 2200
(1996).
Acknowledgement
The authors gratefully acknowledge the financial support
of the Defence Research Establishment Suffield (Supply and
Services Canada contract no. W7702-9-R144/01-XSG).
References
1. (a) R.A. Main and F. Iverson. Biochem. J. 100, 525 (1966);
(b) J. Emsley and D. Hall. In The chemistry of phosphorus.
Wiley, New York. 1976. p. 494.
2. (a) S.H. Gellman, R. Petter, and R. Breslow. J. Am. Chem.
Soc. 108, 2388 (1986); (b) R.S. Brown and M. Zamkanei.
Inorg. Chim. Acta, 108, 201 (1985); (c) R.A. Kenley, R.H.
Flemming, R.M. Laine, D.S. Tse, and J.S. Winterle. Inorg.
Chem. 23, 1870 (1984); (d) B.S. Cooperman. In Metal ions in
biological systems. Vol. 5. 1976. p. 79, and refs therein;
(e) F.M. Menger, L.H. Gan, E. Johnson, and H.D. Durst. J.
Am. Chem. Soc. 109, 2800 (1987); (f) F.M. Menger and T.
Tsuno. J. Am. Chem. Soc. 111, 4903 (1989); (g) P. Scrimin, P.
Tecilla, and U. Tonellato. J. Org. Chem. 56, 161 (1991), and
refs. therein; (h) F. Tafesse. Inorg. Chim. Acta, 269, 287
(1998); (i) P. Scrimin, G. Ghinlanda, P. Tecilla, and R.A.
Moss. Langmuir, 12, 6235 (1996); (j) C.A. Bunton, P. Scrimin,
and P. Tecilla. J. Chem. Soc. Perkin Trans. 2, 419 (1996); (k)
Y. Fujii, T. Itoh, and K. Onodera. Chem. Lett. Jpn. 305 (1995);
(l) S.J. Oh, C.W. Yoon, and J.W. Park. J. Chem. Soc. Perkin
Trans. 2, 329 (1996).
3. (a) J.H. Fendler and E.J. Fendler. In Catalysis in micellar and
macromolecular systems. Academic Press, New York (1975);
(b) C.A. Bunton, E.J. Fendler, L. Sepulveda, and K.-U. Yang.
J. Am. Chem. Soc. 90, 5512 (1968); (c) C.A. Bunton, S. Diaz,
J.M. Hellyer, Y. Ihara, and L.G. Ionescu. J. Org. Chem. 40,
2313 (1975); (d) P.S. Hammond, J.S. Forster, C.N. Lieski, and
H.D. Durst. J. Am. Chem. Soc. 111, 7860 (1989); (e) R.A.
Moss, K.W. Alwis, and G.O. Bizzigotti. J. Am. Chem. Soc.
105, 681 (1983); (f) C.A. Bunton, Y.S. Hong, L.S. Romsted,
and C. Quan. J. Am. Chem. Soc. 103, 5788 (1981); (g) C.A.
Bunton, G. Cerichelli, Y. Ihara, and L. Sepulveda. J. Am.
Chem. Soc. 101, 2429 (1979); (h) C.A. Bunton and L.
Sepulveda. Israel J. Chem. 18, 298 (1979); (i) C.A. Bunton,
Y.S. Hong, L.S. Romsted, and C. Quan. J. Am. Chem. Soc.
103, 5784 (1981); (j) R.A. Moss, B. Wilk, K. Krogh-Jespersen,
J.T. Blair, and J.D. Westbrook. J. Am. Chem. Soc. 111, 250
(1989); (k) R.A. Moss, S. Chatterjee, and B. Wilk. J. Org.
7. P. Haberfield and J. Pessin J. Am. Chem. Soc. 104, 6191
(1982).
8. U. Tonellato. J. Chem. Soc. Perkin Trans. 2, 821 (1977).
9. (a) M. Chevion, J. Katzhendler, and S. Sarel. Israel J. Chem.
10, 795 (1972); (b) V. Gani, C. Lapinte, and P. Viout. Tetrahe-
dron Lett. 4435 (1973); (c) I. Tabushi and Y. Kuroda. Tetrahe-
dron Lett. 3613 (1975); (d) G. Meyer. Tetrahedron Lett. 4581
(1972); (e) G. Meyer. Compt. Rend. 276C, 1599 (1973); (f) K.
Martinek, A.V. Levashov, and I.V. Berezin. Tetrahedron Lett.
1275 (1975); (g) R.C. Moss, R.C. Nahas, S. Ramaswami, and
W.J. Sanders. Tetrahedron Lett. 3379 (1975).
10. W.M. Gulick, Jr., and D.H. Geske. J. Am. Chem. Soc. 88,
2928 (1966).
11. R.A. Moss, S. Bhattachirjie, and S. Chaterjee. J. Am. Chem.
Soc. 111, 3686 (1989).
12. J. Cosby and G.E. Lienhard. J. Am. Chem. Soc. 92, 5707
(1970).
13. W.Y. Abell and A.J. Kirby. Tetrahedron Lett. 1085 (1986).
© 1999 NRC Canada