Inorganic Chemistry
Materials and general methods, PXRD, TEM images,
Article
(
12) Abdelrahim, M. Y. M.; Martins, C. F.; Neves, L. A.; Capasso,
̃
C.; Supuran, C. T.; Coelhoso, I. M.; Joao, G. C.; Barboiu, M.
Supported ionic liquid membranes immobilized with carbonic
1
TGA, H NMR, particle size and SEM/EDX images
anhydrases for CO transport at high temperatures. J. Membr. Sci.
2
2
017, 528, 225−230.
AUTHOR INFORMATION
(13) Satcher, J. H., Jr; Baker, S. E.; Kulik, H. J.; Valdez, C. A.;
Krueger, R. L.; Lightstone, F. C.; Aines, R. D. Modeling, synthesis and
characterization of zinc containing carbonic anhydrase active site
mimics. Energy Procedia 2011, 4, 2090−2095.
■
*
*
*
(
14) Echizen, T.; Ibrahim, M. M.; Nakata, K.; Izumi, M.; Ichikawa,
K.; Shiro, M. Nucleophilic reaction by carbonic anhydrase model zinc
ORCID
compound: characterization of intermediates for CO hydration and
2
phosphoester hydrolysis. J. Inorg. Biochem. 2004, 98, 1347−1360.
(15) Lee, D.; Kanai, Y. Biomimetic carbon nanotube for catalytic
CO hydrolysis: first-principles investigation on the role of oxidation
2
state and metal substitution in porphyrin. J. Phys. Chem. Lett. 2012, 3,
1369−1373.
Author Contributions
⊥
Y.H. and S.Z. contributed equally.
(16) Sahoo, P. C.; Jang, Y. N.; Suh, Y. J.; Lee, S. W. Bioinspired
design of mesoporous silica complex based on active site of carbonic
anhydrase. J. Mol. Catal. A: Chem. 2014, 390, 105−113.
Notes
The authors declare no competing financial interest.
(17) Herr, U.; Spahl, W.; Trojandt, G.; Steglich, W.; Thaler, F.; Van
Eldik, R. Zinc (II) complexes of tripodal peptides mimicking the zinc
(II)-coordination structure of carbonic anhydrase. Bioorg. Med. Chem.
1999, 7, 699−707.
ACKNOWLEDGMENTS
■
The authors acknowledge the financial support from the
National Natural Science Foundation of China (31800793 and
1871153) and Tianjin Natural Science Foundation of China
18JCZDJC37300).
(18) Klaui, W.; Piefer, C.; Rheinwald, G.; Lang, H. Biomimetic Zinc
̈
complexes with a new tripodal nitrogen-donor ligand: tris [2-(1-
methyl-4-tolylimidazolyl) phosphane](PimMe, pTol). Eur. J. Inorg.
Chem. 2000, 2000, 1549−1555.
2
(
(19) Ibrahim, M. M.; Shaban, S. Y.; Ichikawa, K. A promising
REFERENCES
■
structural zinc enzyme model for CO2 fixation and calcification.
Tetrahedron Lett. 2008, 49, 7303−7306.
(
1) Goeppert, A.; Czaun, M.; Prakash, G. K. S.; Olah, G. A. Air as
the renewable carbon source of the future: an overview of CO
capture from the atmosphere. Energy Environ. Sci. 2012, 5, 7833−
853.
2) Kim, M. C.; Lee, S. Y. Comparative study on the catalytic
hydration of carbon dioxide by catalysts that mimic carbonic
anhydrase prepared with zinc salts. ChemCatChem 2015, 7, 698−704.
3) Savile, C. K.; Lalonde, J. J. Biotechnology for the acceleration of
2
(20) Chen, Y.; Ma, S. Biomimetic catalysis of metal−organic
frameworks. Dalton Trans. 2016, 45, 9744−9753.
7
(
(21) Chen, Y.; Lykourinou, V.; Hoang, T.; Ming, L. J.; Ma, S. Size-
selective biocatalysis of myoglobin immobilized into a mesoporous
metal−organic framework with hierarchical pore sizes. Inorg. Chem.
2
(
012, 51, 9156−9158.
(
22) Lykourinou, V.; Chen, Y.; Wang, X. S.; Meng, L.; Hoang, T.;
carbon dioxide capture and sequestration. Curr. Opin. Biotechnol.
011, 22, 818−823.
4) Shukla, R.; Ranjith, P.; Haque, A.; Choi, X. A review of studies
on CO sequestration and caprock integrity. Fuel 2010, 89, 2651−
Ming, L. J.; Musselman, R. L.; Ma, S. Immobilization of MP-11 into a
mesoporous metal−organic framework, MP-11@mesoMOF: a new
platform for enzymatic catalysis. J. Am. Chem. Soc. 2011, 133, 10382−
2
(
2
1
(
0385.
23) Biswas, S.; Tonigold, M.; Speldrich, M.; Ko
D. Nonanuclear coordination compounds featuring {M L } Cores
2
(
664.
5) Kim, M. C.; Lee, S. Y. Carbonic Anhydrase-mimetic
bolaamphiphile self-assembly for CO hydration and sequestration.
Chem. - Eur. J. 2014, 20, 17019−17024.
6) Jin, C.; Zhang, S.; Zhang, Z.; Chen, Y. Mimic carbonic anhydrase
̈
gerler, P.; Volkmer,
6+
9
12
2
(
M= NiII, CoII, or ZnII; L= 1, 2, 3-Benzotriazolate). Eur. J. Inorg.
Chem. 2009, 2009, 3094−3101.
24) Bien, C. E.; Chen, K. K.; Chien, S. C.; Reiner, B. R.; Lin, L. C.;
(
(
using metal−organic frameworks for CO capture and conversion.
2
Wade, C. R.; Ho, W. S. W. Bioinspired metal−organic framework for
Inorg. Chem. 2018, 57, 2169−2174.
trace CO capture. J. Am. Chem. Soc. 2018, 140, 12662−12666.
2
(
7) Jing, G.; Pan, F.; Lv, B.; Zhou, Z. Immobilization of carbonic
(
25) Wright, A. M.; Wu, Z.; Zhang, G.; Mancuso, J. L.; Comito, R.
anhydrase on epoxy-functionalized magnetic polymer microspheres
J.; Day, R. W.; Hendon, C. H.; Miller, J. T.; Dinca,
mimic of carbonic anhydrase in a metal-organic framework. Chem
018, 4, 2894−2901.
26) Keum, C.; Kim, M. C.; Lee, S. Y. Effects of transition metal ions
̆
M. A structural
for CO capture. Process Biochem. 2015, 50, 2234−2241.
2
(
8) Faridi, S.; Bose, H.; Satyanarayana, T. Utility of immobilized
2
(
recombinant carbonic anhydrase of Bacillus halodurans TSLV1 on the
surface of modified iron magnetic nanoparticles in carbon
sequestration. Energy Fuels 2017, 31, 3002−3009.
on the catalytic activity of carbonic anhydrase mimics. J. Mol. Catal. A:
Chem. 2015, 408, 69−74.
(
9) Vinoba, M.; Lim, K. S.; Lee, S. H.; Jeong, S. K.; Alagar, M.
(27) Liu, Y.; Wang, Z.; Shi, M.; Li, N.; Zhao, S.; Wang, J. Carbonic
Immobilization of human carbonic anhydrase on gold nanoparticles
assembled onto amine/thiol-functionalized mesoporous SBA-15 for
anhydrase inspired poly (N-vinylimidazole)/zeolite Zn-β hybrid
membranes for CO capture. Chem. Commun. 2018, 54, 7239−7242.
biomimetic sequestration of CO . Langmuir 2011, 27, 6227−6234.
2
2
(28) Sahoo, P. C.; Jang, Y. N.; Suh, Y. J.; Lee, S. W. Bioinspired
(
10) Peirce, S.; Russo, M. E.; Perfetto, R.; Capasso, C.; Rossi, M.;
design of mesoporous silica complex based on active site of carbonic
anhydrase. J. Mol. Catal. A: Chem. 2014, 390, 105−113.
(29) Zhang, S.; Lu, H.; Lu, Y. Enhanced stability and chemical
Fernandez-Lafuente, R.; Salatino, P.; Marzocchella, A. Kinetic
characterization of carbonic anhydrase immobilized on magnetic
nanoparticles as biocatalyst for CO capture. Biochem. Eng. J. 2018,
2
1
(
38, 1−11.
resistance of a new nanoscale biocatalyst for accelerating CO
2
11) Jo, B. H.; Seo, J. H.; Yang, Y. J.; Baek, K.; Choi, Y. S.; Pack, S.
absorption into a carbonate solution. Environ. Sci. Technol. 2013,
47, 13882−13888.
P.; Oh, S. H.; Cha, H. J. Bioinspired silica nanocomposite with
autoencapsulated carbonic anhydrase as a robust biocatalyst for CO2
sequestration. ACS Catal. 2014, 4, 4332−4340.
(30) Saeed, M.; Deng, L. CO facilitated transport membrane pro-
2
moted by mimic enzyme. J. Membr. Sci. 2015, 494, 196−204.
E
Inorg. Chem. XXXX, XXX, XXX−XXX