7220 Inorg. Chem. 2010, 49, 7220–7222
DOI: 10.1021/ic100725j
A Zinc(II)-Included Hemicryptophane: Facile Synthesis, Characterization,
and Catalytic Activity
Yoshimasa Makita,*,† Kazuya Sugimoto,‡ Kenta Furuyoshi,‡ Keisuke Ikeda,‡ Shin-ichi Fujiwara,†
Tsutomu Shin-ike,† and Akiya Ogawa‡
†Department of Chemistry, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata, Osaka, 573-1121
Japan, and ‡Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University,
Gakuen-cho 1-1, Nakaku, Sakai, Osaka 599-8531, Japan
Received April 15, 2010
A zinc(II)-included hemicryptophane, which has a zinc(II) center
embedded in the cavity, was synthesized and characterized. The
catalytic activity of the hemicryptophane was tested in the hydro-
lysis of methyl para-nitrophenyl carbonate (MPC). A direct com-
parison between the hemicryptophane and the model complex,
which lacks a cavity, demonstrated that the cage structure enhan-
ced the catalytic activity.
of the artificial enzyme.2 However, a few examples of molec-
ular capsules that contain a transition metal complex within
the internal space for recognition and catalysis have been
reported.3-5 In this study, we selected hemicryptophane,
which has been reported by Dutasta,4-6 to construct such
an internal functionalized molecular capsule catalyst. Hemi-
cryptophane is composed of a catalytic site and a suitable
binding pocket for a particular substrate in the internal space.
The catalytic site and the binding pocket are connected by the
rigid spacer.
The synthetic pathway that led to the preparation of
hemicryptophane 2 is outlined in Scheme 1. (Rac)-tri-
(benzaldehyde)-substituted CTV 1 was furnished by a known
procedure.6 A solution of CTV 1 and tris(2-aminoethyl)-
amine (tren) in a diluted acetonitrile and methanol mixture
(3:7) was refluxed, and then sodium tetrahydroborate was
added to the solution. Hemicryptophane 2 was obtained in
97% yield from 1.
The single crystals of 2 were obtained by slow evaporation
from an acetonitrile solution. The X-ray crystal structure of 2
is shown in Figure 1. The crystal structure of 2 exhibits the
preorganized cavity by the CTV and the tren moieties. An
acetonitrile molecule is encapsulated in the cavity and is
Much of the inspiration for the design of supramolecular
catalysis arises from the observation and understanding of
the enzyme catalysis.1 Molecular capsules which provide
precise internal spaces have been created as the active site
*To whom correspondence should be addressed. Fax: þ81-72-864-3162;
Tel: þ81-72-864-3162; E-mail: e-mail makita@cc.osaka-dent.ac.jp.
(1) (a) Kirby, A. J. Angew. Chem., Int. Ed. Engl. 1996, 35, 707.
(b) Cacciapaglia, R.; Stefano, S. D.; Mandolini, L. Acc. Chem. Res. 2004, 37,
113. (c) Sanders, J. K. M. Chem.;Eur. J. 1998, 4, 1378. (d) van Leeuwen, P. W.
N. M. Supramolecular Catalysis; Wiley-VCH: Weinheim, Germany, 2008.
(2) (a) Cram, D. J.; Cram, J. M. Container Molecules and their Guests;
RSC: Cambridge, U. K., 1994. (b) Jasat, A.; Sherman, J. C. Chem. Rev. 1999, 99,
931. (b) Warmuth, R.; Yoon, J. Acc. Chem. Res. 2001, 34, 95. (c) Koblenz, T. S.;
Wassenaar, J.; Reek, J. N. H. Chem. Soc. Rev. 2008, 37, 247. (d) Brotin, T.;
Dutasta, J.-P. Chem. Rev. 2009, 109, 88. (e) Yoshizawa, M.; Klosterman, J. K.;
Fujita, M. Angew. Chem., Int. Ed. 2009, 48, 3418.
(4) (a) Gautier, A.; Mulatier, J.-C.; Crassous, J.; Dutasta, J.-P. Org. Lett.
2005, 7, 1207. (b) Martinez, A.; Robert, V.; Gornitzka, H.; Dutasta, J.-P. Chem.;
Eur. J. 2010, 16, 520.
(5) Martinez, A.; Dutasta, J.-P. J. Catal. 2009, 267, 188.
(6) (a) Gosse, I.; Dutasta, J.-P.; Perrin, M.; Thozet, A. New J. Chem. 1999,
23, 545. (b) Raytchev, P. D.; Perraud, O.; Aronica, C.; Martinez, A.; Dutasta, J.-P.
J. Org. Chem. 2010, 75, 2099.
(3) (a) Ito, H.; Kusukawa, T.; Fujita, M. Chem. Lett. 2000, 85, 598.
ꢀ ꢁ
(b) Rondelez, Y.; Seneque, O.; Merlau, M. L.; Mejia, M. D. P.; Nguyen, S. T.;
Hupp, J. T. Angew. Chem., Int. Ed. 2001, 40, 4239. (c) Leung, D. H.; Fiedler, D.;
Bergman, R. G.; Raymond, K. N. Angew. Chem., Int. Ed. 2004, 43, 963. (d)
Leung, D. H.; Bergman, R. G.; Raymond, K. N. J. Am. Chem. Soc. 2006, 128,
9781. (e) Leung, D. H.; Bergman, R. G.; Raymond, K. N. J. Am. Chem. Soc.
2007, 129, 2746. (f) Kleij, A. W.; Reek, J. N. H. Chem.-Eur. J. 2006, 12, 4218.
(g) Wilkinson, M. J.; van Leeuwen, P. W. N. M.; Reek, J. N. H. Org. Biomol.
Chem. 2005, 3, 2371. (h) Kuil, M.; Soltner, T.; van Leeuwen, P. W. N. M.; Reek,
J. N. H. J. Am. Chem. Soc. 2006, 128, 11344. (i) Kleij, A. W.; Lutz, M.;
Spek, A. L.; van Leeuwen, P. W. N. M.; Reek, J. N. H. Chem. Commun. 2005,
3661. (j) Slagt, V. F.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Reek, J. N. H.
J. Am. Chem. Soc. 2004, 126, 1526. (k) Slagt, V. F.; Reek, J. N. H.; Kamer,
P. C. J.; van Leeuwen, P. W. N. M. Angew. Chem., Int. Ed. 2001, 40,
4271. (l) Koblenz, T. S.; Dekker, H. L.; De Koster, C. G.; van Leeuwen,
(7) (a) Arduini, A.; Calzavacca, F.; Demuru, D.; Pochini, A.; Secchi, A.
J. Org. Chem. 2004, 69, 1386. (b) Canceill, J.; Collet, A.; Gottarelli, G. J. Am.
Chem. Soc. 1984, 106, 5997. (c) Wei, Q.; Seward, G. K.; Hill, P. A.; Patton, B.;
Dimitrov, I. V.; Kuzma, N. N.; Dmochowski, I. J. J. Am. Chem. Soc. 2006, 128,
13274.
(8) Crystal data of 2: C57H67N7O8, Mw = 978.20, monoclinic, space
˚
˚
˚
group P21/c; a = 15.8289(3) A, b = 18.2279(3) A, c = 17.9070(3) A, R =
3
˚
90.0000°, β = 92.8142(7) °, γ = 90.0000°, V = 5160.45(16) A ; Z = 4; μ =
0.085 mm-1; R1 = 0.0392, wR2 = 0.1017; goodness-of-fit (GOF) on F2
=
1.042. CCDC 771645. Crystal data of 3: C55H66N4O13Zn, Mw = 1056.53,
˚
˚
ꢀ ꢁ
P. W. N. M.; Reek, J. N. H. Chem. Commun. 2006, 1700. (m) Seneque, O.;
triclinic, space group P1; a = 11.1164(5) A, b = 15.0225(6) A, c =
˚
Rager, M.-N.; Giorgi, M.; Reinaud, O. J. Am. Chem. Soc. 2000, 122, 6183. (n)
Darbost, U.; Rager, M.-N.; Petit, S.; Jabin, I.; Reinaud, O. J. Am. Chem. Soc.
2005, 127, 8517.
17.5824(8) A, R = 64.3547(10) °, β = 78.9111(12) °, γ = 81.7640(12) °,
V = 2591.55(20) A ; Z = 2; μ = 0.543 mm-1; R1 = 0.0681, wR2 = 0.2441;
3
˚
goodness-of-fit (GOF) on F2 = 1.128. CCDC 771644.
r
pubs.acs.org/IC
Published on Web 07/21/2010
2010 American Chemical Society