G. W. Kabalka et al. / Tetrahedron Letters 50 (2009) 7340–7342
7341
Table 1
SO Cl
SO Cl
2
2
Reduction of arylsulfonyl chlorides to disulfides using triphenylphosphinea
1a + 1b +
Ph P
3
+
Me
S
S
Br
THF, rt
2.0 equiv. PPh
3
Ar-S-S-Ar
Ar-SO Cl
2
2
anhydrous THF/ rt
Me
Br
1
Scheme 2. Cross-coupling reaction of the sulfonyl chlorides.
Entry
1
Ar
Yieldb (%)
92
Me
Br
At present, the reaction mechanism is not well defined. The iso-
lation of Ph3PO indicates that the reaction proceeds through an
ArSCl intermediate since Ph3P is capable of extracting oxygen from
a variety of substrates6,25 including aryl sulfonyl iodides to form
the corresponding deoxygenated derivatives.6 In addition, the
spontaneous decomposition of MeSCl to MeSSMe is also known
in the literature.26 The detection of the cross-coupling product 4-
bromophenyl 4-methylphenyl disulfide (2) by GC–MS from a reac-
tion using an equimolar mixture of para-toluenesulfonyl chloride
and para-bromosulfonyl chloride suggests the possibility of radical
intermediates in the process although an ionic process cannot be
ruled out at this time.19,27 (Scheme 2).
1a
1b
2
3
92
91
1c
4c
75
85
O2N
1d
In conclusion, a practical method for the synthesis of diaryl
disulfides using commercially available and inexpensive triphenyl-
phosphine and arylsulfonyl chlorides in anhydrous tetrahydrofu-
ran under mild reaction conditions has been developed.
5c
1e
NO2
Acknowledgments
1f
6
7
8
95
80
90
S
Financial support from U.S. Department of Energy, and the Rob-
ert H. Cole Foundation is acknowledged.
1j
References and notes
NC
1k
1. (a) Arisawa, M.; Fujimoto, K.; Morinaka, S.; Yamaguchi, M. J. Am. Chem. Soc.
2005, 127, 12226; (b) Nishiyama, Y.; Kawamatsu, H.; Sonoda, N. J. Org. Chem.
2005, 70, 2551.
Me
Me
2. (a) Ferris, K. F.; Franz, J. A. J. Org. Chem. 1992, 57, 777; (b) Antebi, S.; Alper, H.
Tetrahedron Lett. 1985, 26, 2609; (c) Ogawa, A.; Nishiyama, Y.; Kambe, N.;
Murai, S.; Sonoda, N. Tetrahedron Lett. 1987, 28, 3271; (d) Rice, W. G.; Turpin, J.
A.; Schaeffer, C. A.; Graham, L.; Clanton, D.; Buckheit, R. W., Jr.; Zaharevitz, D.;
Summers, M. F.; Wallqvist, A.; Covell, D. G. J. Med. Chem. 1996, 39, 3606; (e)
Dougherty, G.; Haas, O. J. Am. Chem. Soc. 1937, 59, 2469.
3. Kuhle, E. The Chemistry of the Sulfenic Acids; Georg Thieme: Stuttgart, 1973.
4. (a) Douglass, I. B.; Norton, R. V. J. Org. Chem. 1968, 33, 2104; (b) Douglass, I. B. J.
Org. Chem. 1974, 39, 563.
5. (a) Leino, R.; Lönnqvist, J.-E. Tetrahedron Lett. 2004, 45, 8489; (b) Carril, M.;
SanMartin, R.; Domínguez, E.; Tellitu, I. Green Chem. 2007, 3, 315. and
references cited therein.
6. (a) Oae, S.; ToGo, H. Bull. Chem. Soc. Jpn. 1983, 56, 3813; (b) Oae, S.; ToGo, H.
Bull. Chem. Soc. Jpn. 1983, 56, 3802.
7. Suzuki, H.; Tani, H.; Osuka, A. Chem. Lett. 1984, 139.
8. Suter, C. M. The Organic Chemistry of Sulfur; Intrascience Research Foundation:
Santa Monica, CA, 1969.
9. Iranpoor, N.; Firouzabadi, H.; Jamalian, A. Synlett 2005, 1447.
10. Liua, Y.; Zhang, Y. Tetrahedron Lett. 2003, 44, 4291.
11. Guo, H.; Wang, J.; Zhang, Y. Synth. Commun. 1997, 27, 85.
12. Dhar, P.; Ranjan, R.; Chandrasekaran, S. J. Org. Chem. 1990, 55, 3728.
13. Bauer, L.; Cymerman, J. J. Chem. Soc. 1949, 3434.
9
80
1l
F
10
11c
12
91
85
92
1m
1n
O N
2
MeO
1o
a
Reactions were carried out on a 1.0 mmol scale in dry THF (5 mL) at room
temperature unless noted otherwise.
All products gave satisfactory 1H NMR and 13C NMR spectra.
b
14. Alper, H. Angew. Chem., Int. Ed. Engl. 1969, 81, 706.
15. Firouzabadi, H.; Karimi, B. Synthesis 1999, 500.
c
Reactions were carried out at 0 °C.
16. Olah, G. A.; Narang, S. C.; Field, L. D.; Salem, G. F. J. Org. Chem. 1980, 45,
4792.
17. Kielbasinski, P.; Drabowicz, J.; Mikolajczyk, M. J. Org. Chem. 1982, 47,
4808.
18. Chan, T. H.; Montillier, J. P.; Vanhorn, W. H.; Harpp, D. N. J. Am. Chem. Soc. 1970,
92, 7224.
19. Babu, R. J.; Bhatt, V. M. Tetrahedron Lett. 1986, 27, 1073.
20. Narayana, C.; Padmanabhan, S.; Kabalka, G. W. Synlett. 1991, 125.
21. Fujimori, K.; Togo, H.; Oae, S. Tetrahedron Lett. 1980, 21, 4921.
22. To remove a trace amount of sulfonic acid, para-toluenesulfonyl chloride was
recrystalized from hexanes prior to use.
(entries 4, 5, and 11) generated complex mixtures at room temper-
ature due to a known side reaction between the nitro group and
triphenylphosphine,24 but this side reaction could be eliminated
if the reactions were carried out at 0 °C. In addition, in some cases,
small amounts of aryl thiols were detected due to the presence of
trace amounts of sulfonic acids in the starting sulfonyl chlorides.
The formation of aryl thiols could be totally eliminated by purify-
ing the arylsulfonyl chlorides (recrystallization) prior to use.
23. Typical reaction procedure: To
a solution of para-toluenesulfonyl chloride
(190 mg, 1.0 mmol) in tetrahydrofuran (5 mL) was added triphenylphosphine
(524 mg, 2.0 mmol). The mixture was stirred at room temperature and