Please do not adjust margins
ChemComm
DOI: 10.1039/C6CC06372A
ARTICLE
Journal Name
to a new reaction, the recovered catalyst displayed a
significant drop in activity, achieving 8.6% conversion, while
maintaining the yield of EB at 8.2%. This is due to the partial
2
(a) R. Palkovits, M. Antonietti, P. Kuhn, A. Thomas and F.
Schüth, Angew. Chem. Int. Ed., 2009, 48, 6909; (b) A.
Thomas, Angew. Chem. Int. Ed., 2010, 49, 8328; (c) L.
Chen, Y.
Soc., 2010, 132, 9138; (d) P. Kaur, J. T. Hupp and S. T.
Nguyen, ACS Catal., 2011, , 819; (e) Y. Zhang and S. N.
Yang
and D.
Jiang, J.
Am.
Chem.
6 5 3
dissolution and subsequent removal of B(C F ) , supported by
the decrease of F within the framework (12.2 vs 2.2 at%), as
determined by X-ray photoelectron spectroscopy. Accordingly,
1
Riduan, Chem. Soc. Rev., 2012, 41, 2083; (f) Y. Xu, S. Jin, H.
Xu, A. Nagai and D. Jiang, Chem. Soc. Rev., 2013, 42, 8012; (g)
S. Fischer, J. Schmidt, P. Strauch and A. Thomas, Angew.
Chem. Int. Ed., 2013, 52, 12174; (h) Q. Sun, Z. Dai, X. Meng
and F.-S. Xiao, Chem. Soc. Rev., 2015, 44, 6018; (i) R. S.
Sprick, J.-X. Jiang, B. Bonillo, S. Ren, T. Ratvijitvech, P.
Guiglion, M. A. Zwijnenburg, D. J. Adams and A. I. Cooper, J.
Am. Chem. Soc., 2015, 137, 3265; (j) A. Thomas, Angew.
Chem. Int. Ed., 2010, 49, 8328; (k) P. Kaur, J. T. Hupp and S. T.
restoration of the catalytic activity was facilely achieved
9
(Table S2). Following this
through the addition of B(C
6
F
5
)
3
approach, the recycled catalyst can consistently give high
conversion of AP (29.4%) and EB yield (28.1%), even after as
many as four recycles.
Seeking to probe the generality of our CNP-1/B
heterogeneous catalyst, we investigated the hydrogenation of
a range of other ketone substrates, such as three alkyl ketones
Nguyen, ACS Catal., 2015, 5, 4556; (l) Q. Sun, Z. Dai, X. Liu, N.
Sheng, F. Deng, X. Meng and F.-S. Xiao, J. Am. Chem. Soc.,
2015, 137, 5204; (m) C. Yang, B. C. Ma, L. Zhang, S. Lin, S.
Ghasimi, K. Landfester, K. A. I. Zhang and X. Wang, Angew.
Chem. Int. Ed., 2016, DOI:10.1002/anie.201603532.
R. Noyori, Angew. Chem. Int. Ed., 2002, 41, 2008.
M. Pan, A. J. Brush, Z. D. Pozun, H. C. Ham, W.-Y. Yu, G.
Henkelman, G. S. Hwang and C. B. Mullins, Chem. Soc. Rev.,
2013, 42, 5002.
(
Table 1, Entry 4-6) and three benzyl ketone (Entry 7-9). As
displayed in Table 1, these reactions generally afford
conversion to the desired hydrogenation products, clearly
demonstrating the accessibility of bulky substrates within the
pore structure of the CNP-1/B system and the diversity of this
novel heterogeneous FLP catalyst.
3
4
5
(a) Q. Chen, M. Luo, P. Hammershøj, D. Zhou, Y. Han, B. W.
Laursen, C.-G. Yan and B.-H. Han, J. Am. Chem. Soc., 2012,
134, 6084; (b) C. Gu, N. Huang, J. Gao, F. Xu, Y. Xu and D.
Jiang, Angew. Chem. Int. Ed., 2014, 53, 4850.
Conclusions
In conclusion, we have developed a novel heterogeneous
system for efficient, metal-free, and water-tolerant
hydrogenation using the steric encumbrance within
conjugated nanoporous polymers. Analysis of structurally
related variants demonstrate the intrinsic steric hindrance
from the framework is what effects formation of a favourable
hydrogenation microenvironment, while computational results
indicate the local sterics surrounding the Lewis base also play a
significant role in the charge distribution and thus the resulting
catalytic activity. As the struts for these assemblies can be
rationally designed and synthetically controlled through
conventional organic techniques, we anticipate that this
innovative new class of materials will enable new areas of
catalysis research, and the successful pursuit of more
challenging hydrogenation reactions.
6
7
T. Jin, Y. Xiong, X. Zhu, Z. Tian, D.-J. Tao, J. Hu, D.-e. Jiang, H.
Wang, H. Liu and S. Dai, Chem. Commun., 2016, 52, 4454.
(a) T. Mahdi and D. W. Stephan, J. Am. Chem. Soc., 2014,
136, 15809; (b) D. J. Scott, M. J. Fuchter and A. E. Ashley, J.
Am. Chem. Soc., 2014, 136, 15813.
S. J. Geier, A. L. Gille, T. M. Gilbert and D. W. Stephan, Inorg.
Chem., 2009, 48, 10466.
T. Mahdi and D. W. Stephan, Angew. Chem. Int. Ed., 2015,
8
9
1
1
54, 8511.
0 A. Karkamkar, K. Parab, D. M. Camaioni, D. Neiner, H. Cho, T.
K. Nielsen and T. Autrey, Dalton Trans., 2013, 42, 615.
1 S. Grimme, H. Kruse, L. Goerigk and G. Erker, Angew. Chem.
Int. Ed., 2010, 49, 1402.
Acknowledgements
The research was supported financially by the Division of
Chemical Sciences, Geosciences, and Biosciences, Office of
Basic Energy Sciences, US Department of Energy. The NMR
experiments were performed in the Environmental Molecular
Sciences Laboratory,
a national scientific user facility
sponsored by the U.S. Department of Energy's Office of
Biological and Environmental Research and located at Pacific
Northwest National Laboratory (PNNL).
References
1
(a) A. Corma, H. Garcia and F. Llabrés i Xamena, Chem.
Rev., 2010, 110, 4606; (b) X. H. Li and M. Antonietti, Chem.
Soc. Rev., 2013, 42, 6593; (c) A. G. Slater and A. I. Cooper,
Science, 2015, 348, aaa8075.
4
| Chem. Commun., 2016, 00, 1-5
This journal is © The Royal Society of Chemistry 2016
Please do not adjust margins