Journal of the American Chemical Society
Page 4 of 5
alcohols (Scheme 2). Initially, alcohol can be absorbed on
(9) Lokras, S. S.; Deshpande, P. K.; Kuloor, N. R. Ind. Eng. Chem.
Process Des. Dev. 1970, 9, 293.
(10) Nielsen, M.; Kammer, A.; Cozzula, D.; Junge, H.; Gladiali, S.;
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
the surface of Ni particles, a phenomenon similar to a
step in the mechanism of thermal catalytic dehydrogena-
3
2
Beller, M. Angew. Chem. Int. Ed. 2011, 50, 9593.
tion. When CdS is illuminated by a photon with energy
greater than its band-gap energy, a photo-excited electron
and hole are generated, and the electron is localized from
the conduction band (CB) of CdS to the deposited Ni
(
11) Mitsudome, T.; Mikami, Y.; Funai, H.; Mizugaki, T.; Jitsuka-
wa, K.; Kaneda, K. Angew. Chem. Int. Ed. 2008, 47, 138.
12) Shimizu, K.-i.; Kon, K.; Shimura, K.; Hakim, S. S. M. A. J.
(
Catal. 2013, 300, 242.
1
5,33
NPs.
A proton abstracted from the OH group of the
(13)Kim, W.-H.; Park, I. S.; Park, J. Org. Lett. 2006, 8, 2543.
(14) Chen, X.; Shen, S.; Guo, L.; Mao, S. S. Chem. Rev. 2010, 110,
6503.
(15) Simon, T.; Bouchonville, N.; Berr, M. J.; Vaneski, A.; Adrović,
A.; Volbers, D.; Wyrwich, R.; Döblinger, M.; Susha, A. S.; Rogach,
A. L.; Jäckel, F.; Stolarczyk, J. K.; Feldmann, J. Nat Mater 2014, 13,
alcohol absorbed on Ni surface is reduced by this electron,
resulting in a Ni-H hydride and an alkoxide anion. Subse-
3
1
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
quently, this alkoxide anion is oxidized by the hole, and
1
2
the Ni-assisted homolytic cleavage of α C-H occurs, af-
fording another Ni-H hydride and the corresponding al-
dehyde or ketone. Finally, two Ni-H hydrides afford one
molecule of hydrogen. Given the KIE results and the dif-
1013.
(16) Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.;
Carlsson, J. M.; Domen, K.; Antonietti, M. Nat Mater 2009, 8, 76.
(17) Okamoto, Y.; Ida, S.; Hyodo, J.; Hagiwara, H.; Ishihara, T. J.
Am. Chem. Soc. 2011, 133, 18034.
(18) Wu, G.; Chen, T.; Su, W.; Zhou, G.; Zong, X.; Lei, Z.; Li, C.
Int. J. Hydrogen Energy 2008, 33, 1243.
3
2
ference in dissociation energy between C-H and O-H,
the oxidation half-reaction is a rate-limiting step.
In conclusion, we demonstrated that the efficient, visi-
ble light-driven dehydrogenation of alcohols under ambi-
ent conditions can be achieved. Key to success is the in-
terface between Ni nanocrystal and CdS. We believe that
after further optimization of the semiconductor and co-
catalyst, efficient splitting of alcohols under sunlight will
become a feasible way.
(
2
(
19) Zou, Z.; Ye, J.; Abe, R.; Arakawa, H. Catal. Lett. 2000, 68,
35.
20) Oetjen, H. F.; Schmidt, V. M.; Stimming, U.; Trila, F. J. Elec-
trochem. Soc. 1996, 143, 3838.
(21) Yan, H.; Yang, J.; Ma, G.; Wu, G.; Zong, X.; Lei, Z.; Shi, J.; Li,
C. J. Catal. 2009, 266, 165.
(22) Huber, G. W.; Shabaker, J. W.; Dumesic, J. A. Science 2003,
ASSOCIATED CONTENT
Supporting Information.
Experimental details and data. This material is available free
of charge on the ACS Publications website at DOI:
300, 2075.
(23) Uemichi, Y.; Sakai, T.; Kanazuka, T. Chem. Lett. 1989, 18,
7
(
77.
24) Meng, X.; Wang, T.; Liu, L.; Ouyang, S.; Li, P.; Hu, H.; Kako,
T.; Iwai, H.; Tanaka, A.; Ye, J. Angew. Chem. Int. Ed. 2014, 53,
1478.
25) Tojo, G.; Ferna´ndez, M. Oxidation of Alcohols to Aldehydes
and Ketones; Springer: New York, 2006.
26) Enache, D. I.; Edwards, J. K.; Landon, P.; Solsona-Espriu, B.;
10.1021/jacs.
1
(
AUTHOR INFORMATION
Corresponding Authors
(
Carley, A. F.; Herzing, A. A.; Watanabe, M.; Kiely, C. J.; Knight,
D. W.; Hutchings, G. J. Science 2006, 311, 362.
*
*
(27) Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H. J. Am.
Chem. Soc. 2011, 133, 7296.
(28) Zong, X.; Yan, H.; Wu, G.; Ma, G.; Wen, F.; Wang, L.; Li, C. J.
Am. Chem. Soc. 2008, 130, 7176.
Notes
The authors declare no competing financial interest.
(29) Jin, Z.; Li, Q.; Zheng, X.; Xi, C.; Wang, C.; Zhang, H.; Feng,
ACKNOWLEDGMENT
This work was financially supported by the National Natural
Science Foundation of China (Grant Nos. 21303004, 21133001,
L.; Wang, H.; Chen, Z.; Jiang, Z. J. Photochem. Photobiol. A:
Chem. 1993, 71, 85.
(30) Mitkina, T.; Stanglmair, C.; Setzer, W.; Gruber, M.; Kisch,
H.; Konig, B. Org. Biomol. Chem. 2012, 10, 3556.
21232003 and 21472057) and the National Key Basic Research
(
31) Su, F.; Mathew, S. C.; Lipner, G.; Fu, X.; Antonietti, M.;
Blechert, S.; Wang, X. J. Am. Chem. Soc. 2010, 132, 16299.
32) Yamashita, M.; Dai, F.-Y.; Suzuki, M.; Saito, Y. Bull. Chem.
Soc. Jpn. 1991, 64, 628.
33) Tong, H.; Ouyang, S.; Bi, Y.; Umezawa, N.; Oshikiri, M.; Ye,
J. Adv. Mater. 2012, 24, 229.
Program of China (Grant Nos. 2014CB239303, 2013CB932601).
(
REFERENCES
(1) Schlapbach, L.; Zuttel, A. Nature 2001, 414, 353.
(
(2) Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.;
O'Keeffe, M.; Yaghi, O. M. Science 2003, 300, 1127.
(
3) Dalebrook, A. F.; Gan, W.; Grasemann, M.; Moret, S.; Lau-
renczy, G. Chem. Commun. 2013, 49, 8735.
4) Sakintuna, B.; Lamari-Darkrim, F.; Hirscher, M. Int. J. Hydro-
gen Energy 2007, 32, 1121.
5) Nielsen, M.; Alberico, E.; Baumann, W.; Drexler, H.-J.; Junge,
H.; Gladiali, S.; Beller, M. Nature 2013, 495, 85.
6) Rodríguez-Lugo, R. E.; Trincado, M.; Vogt, M.; Tewes, F.;
(
(
(
Santiso-Quinones, G.; Grützmacher, H. Nat Chem 2013, 5, 342.
(7) Palo, D. R.; Dagle, R. A.; Holladay, J. D. Chem. Rev. 2007, 107,
3
(
992.
8) Haryanto, A.; Fernando, S.; Murali, N.; Adhikari, S. Energy
Fuels 2005, 19, 2098.
ACS Paragon Plus Environment