10.1002/chem.201800091
Chemistry - A European Journal
FULL PAPER
H. J. Sch.fer, Angew. Chem. Int. Ed. 2011, 50, 3854–3871; Angew.
Chem. 2011, 123, 3938–3956; c) M. A. R. Meier, J. O. Metzger, U. S.
Schubert, Chem. Soc. Rev. 2007, 36, 1788–1802; d) Y. Xia, R. C.
Larock, Green Chem. 2010, 12, 1893–1909.
[20] T. Saravanan, M.-L. Reif, D. Yi, M. Lorillière, F. Charmantray, L.
Hecquet, W.-D. Fessner. Green Chem. 19, 481-489.
[21] For reviews on NHC catalysis including benzoin condensation, see: a)
X. Bugaut, F. Glorius, Chem. Soc. Rev. 2012, 41, 3511-3522; b) C. D.
Campbell, K. B. Ling, A. D. Smith, in N-Heterocyclic Carbenes in
Transition Metal Catalysis and Organocatalysis (Ed. C. S. J. Cazin),
Springer, Netherlands, 2011, pp. 263–297; c) P.-C. Chiang, J. W. Bode,
in N-Heterocyclic Carbenes: From Laboratory Curiosities to Efficient
Synthetic Tools (Ed. S. Díez-González), Royal Society of Chemistry,
Cambridge, 2010, pp. 339-445; d) E. M. Phillips, A. Chan, K. A. Scheidt,
Aldrichimica Acta 2009, 42, 55–66; e) D. Enders, O. Niemeier, A.
Henseler, Chem. Rev. 2007, 107, 5606-5655; f) N. Marion, S. Díez-
González, S. P. Nolan, Angew. Chem. Int. Ed. 2007, 46, 2988-3000.
[22] SciFinder returns 1230 references for the concept of “benzoin
condensation” while only 13 references were found using “retro-
benzoin” as keywords (December 1st, 2017). Duplicates were removed
for each search.
[5]
[6]
J. M. Fraile, J. I. García, C. I. Herrerías, E. Pires, Synthesis, 2017, 49,
1444–1460.
For
a review about hydroformylation of oleochemicals, see: T.
Vanbésien, E. Monflier, F. Hapiot, Eur. J. Lipid Sci. Technol., 2016, 118,
26–35.
[7]
[8]
[9]
a) D. Mandelli, Y. N. Kozlov, W. A. Carvalho, G. B. Shul'pin, Catal.
Commun. 2012, 26, 93-97; b) B.-J. Kollbe Ahn, S. Kraft, X. S. Sun, J.
Agric. Food Chem. 2012, 60, 2179-2189.
a) B.-J. Kollbe Ahn, S. Kraftb, X. S. Sun, J. Mater. Chem. 2011, 21,
9498; b) M. Dierker, H. J. Schäfer, Eur. J. Lipid Sci. Technol. 2010, 112,
122-136.
K. M. Doll, G. B. Bantchev, R. E. Murray, ACS Sustainable Chem. Eng.
2013, 1, 39-45.
[10] a) N. D. Vu, B. Guicheret, N. Duguet, E. Metay, M. Lemaire, Green
Chem. 2017, 19, 3390-3399; b) S. Fürmeier, J. O. Metzger, Eur. J. Org.
Chem. 2003, 885–893; c) E. Brousse, D. Lefort, C. R. Acad. Sc. Paris
1965, 261, groupe 8, 1990-1991.
[23] a) A. Miyashita, Y. Suzuki, Y. Okumura, T. Higashino, Chem. Pharm.
Bull. 1996, 44, 252-254; b) A. Miyashita, Y. Suzuki, Y. Okumura, K.
Iwamoto, T. Higashino, Chem. Pharm. Bull. 1998, 46, 6-11; c) Y.
Suzuki, Y. Takemura, K. Iwamoto, T. Higashino, A. Miyashita, Chem.
Pharm. Bull. 1998, 46, 199-206.
[11] a) J. Langanke, L. Greiner, W. Leitner, Green Chem., 2013, 15, 1173-
1182; b) N. Tenhumberg, H. Büttner, B. Schäffner, D. Kruse, M.
Blumensteinc, T. Werner Green Chem. 2016, 18, 3775–3788; c) H.
Büttner, C. Grimmer, J. Steinbauer, T. Werner, ACS Sustainable Chem.
Eng. 2016, 4, 4805–4814.
[24] J. Zhang, C. Xing, B. Tiwari, Y. R. Chi, J. Am. Chem. Soc. 2013, 135,
8113-8116.
[25] E. Deruer, N. Duguet, M. Lemaire, ChemSusChem 2015, 8, 2481-2486.
[26] K2CO3 was previously identified as the most suitable base for this retro-
benzoin process. Moreover, the use of microwaves was privileged for
the optimization as preliminary experiments have shown that
microwave heating was more efficient and faster than traditional
heating. Similar observation was made by Chi et al. for the retro-
benzoin condensation of carbohydrate derivatives (see reference 24).
[27] A. Fulias, G. Vlase, T. Vlase, D. Onetiu, N. Doca and I. Ledeti, J. Therm.
Anal. Calorim., 2014, 118, 1033-1038.
[12] T. Vanbésien, E. Monflier, F. Hapiot, Green Chem. 2016, 18, 6687–
6694.
[13] For our contribution on the reductive alkylation of polyols with
aldehydes, see: a) Y. Shi, W. Dayoub, A. Favre-Réguillon, G.-R. Chen,
M. Lemaire, Tetrahedron Lett, 2009, 50, 6891–6893; b) Y. Shi, W.
Dayoub, G.-R. Chen, M. Lemaire, Green Chem. 2010, 12, 2189–2195;
c) C. Gozlan, R. Lafon, N. Duguet, A. Redl, M. Lemaire, RSC Adv.
2014, 4, 50653-50661; d) Sutter, M.; Da Silva, E.; Duguet, N.; Raoul,
Y.; Métay, E.; Lemaire, M. Chem. Rev. 2015, 115, 8609-8651; e)
Gozlan, C.; Deruer, E.; Duclos, M.-C.; Molinier, V.; Aubry, J.-M.; Redl,
A.; Duguet, N.; Lemaire, M. Green Chem. 2016, 18, 1994-2004; f)
Belmessieri, D.; Gozlan, C.; Duclos, M.-C.; Molinier, V.; Aubry, J.-M.;
Dumitrescu, O.; Lina, G.; Redl, A.; Duguet, N.; Lemaire, M. Eur. J. Med.
Chem. 2017, 128, 98-106; g) Belmessieri, D.; Gozlan, C.; Duclos, M.-
C.; Dumitrescu, O.; Lina, G.; Redl, A.; Duguet, N.; Lemaire, M. Bioorg.
Med. Chem. Lett. 2017, 27, 4660-4663.
[28] a) N. Shimahara, N. Nakajima and H. Hirano, Chem. Pharm. Bull., 1974,
22, 2081-2085; b) N. Shimahara, H. Asakawa, Y. Kawamatsu and H.
Hirano, Chem. Pharm. Bull., 1974, 22, 2086-2090.
[29] a) W. H. Awad, J. W. Gilman, M. Nyden, R. H. Harris, Jr., T. E. Sutto, J.
Callahan, P. C. Trulove, H. C. DeLong and D. M. Fox, Thermochim.
Acta, 2004, 409, 3–11; b) H. Ohtani, S. Ishimura and M. Kumai, Anal.
Sci., 2008, 24, 1335–1340.
[30] Methyl iodide was not detected, even in the liquid nitrogen trap before
the pump as it is too volatile. So far, it could not be ruled out that methyl
iodide could react with a nucleophile, e.g. the OH group of the -
hydroxyketone, in the reaction media. However, the corresponding
methylated -hydroxyketone was not observed in the GC
chromatograms.
[14] N. D. Spiccia, E. Border, J. Illesinghe, W. R. Jackson, A. J. Robinson,
Synthesis 2013, 45, 1683–1688.
[15] a) G. S. Forman, R. M. Bellabarb, R. P. Tooze, A. M. Z. Slawin, R.
Karch, R. Winde, J. Organomet. Chem. 2006, 691, 5513-5516; b) K. A.
Burdett, L. D. Harris, P. Margl, B. R. Maughon, T. Mokhtar-Zadeh, P. C.
Saucier, E. P. Wasserman, Organometallics 2004, 23, 2027-2047; c) R.
M. Thomas, B. K. Keitz, T. M. Champagne, R. H. Grubbs, J. Am. Chem.
Soc. 2011, 133, 7490–7496; d) J. C. Mol, Green Chem. 2002, 4, 5–13.
[16] a) A. Behr, A. J. Vorholt. Hydroformylation and Related Reactions of
Renewable Resources. In: Meier M., Weckhuysen B., Bruijnincx P.
(eds) Organometallics and Renewables. Top. Organomet. Chem., 2012,
39, 103-128. Springer, Berlin, Heidelberg; b) M. Furst, V. Korkmaz, T.
Gaide, T. Seidensticker, A. Behr, A. J. Vorhold, ChemCatChem, 2017,
9, 4319-4323.
[31] M. T. Clough, K. Geyer, P. A. Hunt, J. Mertes and T. Welton, Phys.
Chem. Chem. Phys. 2013, 15, 20480-20495.
[32] For a review about the thermal stability of ionic liquids, see: C. Maton,
N. De Vos, C. V. Stevens, Chem. Soc. Rev. 2013, 42, 5963-5977.
[33] Q. Yan, H. Zang, C. Wu, J. Feng, M. Li, M. Zhang, L.Wang, B. Cheng, J.
Mol. Liq. 2015, 204, 156–161.
[34] J. G. Huddleston, A. E. Visser, W. M. Reichert, H. D. Willauer, G. A.
Broker, R. D. Rogers, Green Chem. 2001, 3, 156–164.
[35] For examples of self-metathesis of methyl oleate, see: a) J. C. Mol,
Green Chem. 2002, 4, 5–13; b) A. Kajetanowicz, A. Sytniczuk and K.
Grela, Green Chem. 2014, 16, 1579–1585.
[17] a) K. Louis, L. Vivier, J.-M. Clacens, M. Brandhorst, J.-L. Dubois, K. De
Oliveira Vigier, Y. Pouilloux, Green Chem. 2014, 16, 96-101; b) T. S.
Omonov, E. Kharraz, P. Foleyb, J. M. Curtis, RSC Adv. 2014, 4,
53617–53627; c) M. D. Lundin, A. M. Danby, G. R. Akien, T. P. Binder,
D. H. Busch, B. Subramaniam, ACS Sustainable Chem. Eng. 2015, 3,
3307−3314.
[18] a) G. Maerker, E. T. Haeberer, U.S. Patent, US 3405149, 1968; b) S.
Mithran, A. S. Subbaraman, Molecules, 1999, 4, 159-164.
[19] N. J. Turner, Curr. Opin. Biotechnol. 2000, 11, 527-531.
This article is protected by copyright. All rights reserved.