First author et al.
Report
with electron-proton-transfer mediators. Nature 2016, 535 (7612),
28 (12), 1025-1027; (b) Sun, H. Y.; Hua, Q.; Guo, F. F.; Wang, Z. Y.;
Huang, W. X., Selective Aerobic Oxidation of Alcohols by Using
Manganese Oxide Nanoparticles as an Efficient Heterogeneous
Catalyst. Adv. Synth. Catal. 2012, 354 (4), 569-573; (c) Su, Y.; Wang, L.
C.; Liu, Y. M.; Cao, Y.; He, H. Y.; Fan, K. N., Microwave-accelerated
solvent-free aerobic oxidation of benzyl alcohol over efficient and
reusable manganese oxides. Catal. Commun. 2007, 8 (12), 2181-2185.
(a) Su, H.; Zhang, K. X.; Zhang, B.; Wang, H. H.; Yu, Q. Y.; Li, X. H.;
Antonietti, M.; Chen, J. S., Activating Cobalt Nanoparticles via the
Mott-Schottky Effect in Nitrogen-Rich Carbon Shells for Base-Free
Aerobic Oxidation of Alcohols to Esters. J. Am. Chem. Soc. 2017, 139
(2), 811-818; (b) Zhao, X.; Zhou, Y.; Huang, K.; Li, C. Z.; Tao, D. J.,
Ultralow Loading Cobalt-Based Nanocatalyst for Benign and Efficient
Aerobic Oxidation of Allylic Alcohols and Biobased Olefins. ACS Sustain.
Chem. Eng. 2019, 7 (2), 1901-1908; (c) Albadi, J.; Alihosseinzadeh, A.;
Jalali, M.; Shahrezaei, M.; Mansournezhad, A., Highly dispersed cobalt
nanoparticles supported on a mesoporous Al2O3: An efficient and
recyclable catalyst for aerobic oxidation of alcohols in aqueous media.
Mol. Catal. 2017, 440, 133-139.
Zhang, W.; Xiao, Z. A.; Wang, J. J.; Fu, W. Q.; Tan, R.; Yin, D. H., Selective
Aerobic Oxidation of Alcohols over Gold-Palladium Alloy Catalysts
Using Air at Atmospheric Pressure in Water. ChemCatChem 2019, 11
(6), 1779-1788.
Zavahir, S.; Xiao, Q.; Sarina, S.; Zhao, J.; Bottle, S.; Wellard, M.; Jia, J. F.;
Jing, L. Q.; Huang, Y. M.; Blinco, J. P.; Wu, H. S.; Zhu, H. Y., Selective
Oxidation of Aliphatic Alcohols using Molecular Oxygen at Ambient
Temperature: Mixed-Valence Vanadium Oxide Photocatalysts. ACS
Catal. 2016, 6 (6), 3580-3588.
(a) Jiang, X. G.; Liu, J. X.; Ma, S. M., Iron-Catalyzed Aerobic Oxidation of
Alcohols: Lower Cost and Improved Selectivity. Org. Process Res. Dev.
2019, 23 (5), 825-835; (b) Wei, Z. Y.; Ru, S.; Zhao, Q. X.; Yu, H.; Zhang,
G.; Wei, Y. G., Highly efficient and practical aerobic oxidation of
alcohols by inorganic-ligand supported copper catalysis. Green. Chem.
2019, 21 (15), 4069-4075; (c) Wang, L. Y.; Shang, S. S.; Li, G. S.; Ren, L.
H.; Lv, Y.; Gao, S., Iron/ABNO-Catalyzed Aerobic Oxidation of Alcohols
and Ketones under Ambient Atmosphere. J. Org. Chem. 2016, 81 (5),
2189-2193. (d) Zhao, G.; Yang, F.; Chen, Z.; Liu, Q.; Ji, Y.; Zhang, Y.,
Metal/oxide interfacial effects on the selective oxidation of primary
alcohols. Nat. Commun. 2017, 8, 14039; (e) Liu, Y.; Ma, S. M., CuCl-
Catalyzed Aerobic Oxidation of Allylic and Propargylic Alcohols to
Aldehydes or Ketones with 1:1 Combination of Phenanthroline and
Bipyridine as the Ligands. Chin. J. Chem. 2012, 30 (1), 29-34; (f) Hoover,
J. M.; Stahl, S. S., Highly practical copper (I)/TEMPO catalyst system for
chemoselective aerobic oxidation of primary alcohols. J. Am. Chem.
Soc. 2011, 133(42), 16901-16910; (g) Wu, J. L.; Liu, Y.; Ma, X. W.; Liu,
P.; Gu, C. Z.; Dai, B., Cu(II)-Catalyzed Ligand-Free Oxidation of
Diarylmethanes and Second Alcohols in Water. Chin. J. Chem. 2017, 35
(9), 1391-1395.
406-410; (b) Crabtree, R. H., Homogeneous Transition Metal Catalysis
of Acceptorless Dehydrogenative Alcohol Oxidation: Applications in
Hydrogen Storage and to Heterocycle Synthesis. Chem. Rev. 2017, 117
(13), 9228-9246; (c) Koh, M. J.; Khan, R. K. M.; Torker, S.; Yu, M.; Mikus,
M. S.; Hoveyda, A. H., High-value alcohols and higher-oxidation-state
compounds by catalytic Z-selective cross-metathesis. Nature 2015,
517 (7533), 181-186; (d) Mallat, T.; Baiker, A., Oxidation of alcohols
with molecular oxygen on solid catalysts. Chem. Rev. 2004, 104 (6),
3037-3058. (e) Sheldon, R. A.; Arends, I. W. C. E.; Ten Brink, G. J.;
Dijksman, A., Green, catalytic oxidations of alcohols. Acc. Chem. Res.
2002, 35 (9), 774-781; (f) Sigman, M. S.; Jensen, D. R., Ligand-
modulated palladium-catalyzed aerobic alcohol oxidations. Acc. Chem.
Res. 2006, 39 (3), 221-229.
(a) Heidarnezhad, A.; Zamani, F., Chromium containing
Fe3O4/polyacrylonitrile-ethylenediamine
as
a
magnetically
recoverable catalyst for alcohol oxidation. Catal. Commun. 2015, 60,
105-109; (b) Thao, N. T.; Nhu, N. T.; Lin, K. S., Liquid phase oxidation of
benzyl alcohol to benzaldehyde over sepiolite loaded chromium oxide
catalysts. J. Taiwan Inst. Chem. Eng. 2018, 83, 10-22.
(a) Kani, I.; Bolat, S., Effective catalytic oxidation of alcohols and
alkenes with monomeric versus dimeric manganese(II) catalysts and t-
BuOOH. Appl. Organomet. Chem. 2016, 30 (8), 713-721; (b) Gogoi, N.;
Begum, T.; Dutta, S.; Bora, U.; Gogoi, P. K., Rice husk derived nanosilica
supported Cu(II) complex: an efficient heterogeneous catalyst for
oxidation of alcohols using TBHP. RSC Adv. 2015, 5 (115), 95344-95352.
(a) Zhang, Z.; Khrouz, L.; Yin, G. C.; Andrioletti, B., Efficient Oxidation
of Benzylic and Aliphatic Alcohols Using a Bioinspired Cross-Bridged
Cyclam Manganese Complex with H2O2. Eur. J. Org. Chem. 2019, (2-3),
323-327; (b) Wagh, R. B.; Nagarkar, J. M., An efficient and sustainable
protocol for oxidation of alcohols to carbonyl compounds.
Tetrahedron Lett. 2018, 59 (37), 3443-3447.
(a) Dong, Y. L.; Zhao, X. M.; Liu, R. H., 4-OH-TEMPO/TCQ/TBN/HCl: A
Metal-Free Catalytic System for Aerobic Oxidation of Alcohols under
Mild Conditions. Chin. J. Chem. 2015, 33 (9), 1019-1023; (b) Shen, J. X.;
Sun, J. K.; Qin, S. S.; Chu, C. H.; Liu, R. H., 4-Benzamido-TEMPO
Catalyzed Oxidation of a Broad Range of Alcohols to the Carbonyl
Compounds with NaBrO3 under Mild Conditions. Chin. J. Chem. 2014,
32 (5), 405-409; (c) Zhang, J.; Jiang, Z. Q.; Zhao, D.; He, G. Z.; Zhou, S.
L.; Han, S. Q., Transition-Metal-Free TEMPO Catalyzed Aerobic
Oxidation of Alcohols to Carbonyls Using an Efficient Br2 Equivalent
under Mild Conditions. Chin. J. Chem. 2013, 31 (6), 794-798.
(a) Isaka, Y.; Kondo, Y.; Kuwahara, Y.; Mori, K.; Yamashita, H.,
Incorporation of a Ru complex into an amine-functionalized metal-
organic framework for enhanced activity in photocatalytic aerobic
benzyl alcohol oxidation. Catal. Sci. Technol. 2019, 9 (6), 1511-1517; (b)
Patil, M. R.; Kapdi, A. R.; Kumar, A. V., Recyclable Supramolecular
Ruthenium Catalyst for the Selective Aerobic Oxidation of Alcohols on
Water: Application to Total Synthesis of Brittonin A. ACS Sustain. Chem.
Eng. 2018, 6 (3), 3264-3278; (c) Hao, Z. Q.; Li, N.; Yan, X. L.; Li, Y.; Zong,
S. Q.; Liu, H. T.; Han, Z. G.; Lin, J., Ruthenium carbonyl complexes with
pyridylalkanol ligands: synthesis, characterization and catalytic
properties for aerobic oxidation of secondary alcohols. New J. Chem.
2018, 42 (9), 6968-6975.
Ma, S. M.; Liu, J. X.; Li, S. H.; Chen, B.; Cheng, J. J.; Kuang, J. Q.; Liu, Y.;
Wan, B. Q.; Wang, Y. L.; Ye, J. T.; Yu, Q.; Yuan, W. M.; Yu, S. C.,
Development of a General and Practical Iron Nitrate/TEMPO-
Catalyzed Aerobic Oxidation of Alcohols to Aldehydes/Ketones:
Catalysis with Table Salt. Adv. Synth. Catal. 2011, 353 (6), 1005-1017.
Rajabimoghadam, K.; Darwish, Y.; Bashir, U.; Pitman, D.; Eichelberger,
S.; Siegler, M. A.; Swart, M.; Garcia-Bosch, I., Catalytic Aerobic
Oxidation of Alcohols by Copper Complexes Bearing Redox-Active
(a) Jing, H.; Sun, K. Q.; He, D. P.; Xu, B. Q., Amorphous manganese oxide
for catalytic aerobic oxidation of benzyl alcohol. Chin. J. Catal. 2007,
© 2019 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Chin. J. Chem. 2019, 37, XXX-XXX
This article is protected by copyright. All rights reserved.