RSC Advances
Paper
alcohol to the corresponding ketone with high selectivity. By
applying the organic small molecule dye anthraquinone to the
S. Prabpai, N. Nuntasaen and V. Reutrakul, Phytochemistry,
2020, 169, 112182.
photocatalytic oxidation of secondary aromatic alcohols, we 12 J. G. Park, S. C. Kim, Y. H. Kim, W. S. Yang, Y. Kim, S. Hong,
have discovered a new green catalytic method that makes
selective alcohol oxidation conditions less demanding. In
K. H. Kim, B. C. Yoo, S. H. Kim, J. H. Kim and J. Y. Cho,
Mediators Inammation, 2016, 2016, 1903849.
addition, it may be possible to apply this selective oxidation to 13 J. Garcia-Serna, T. Moreno, P. Biasi, M. J. Cocero, J. P. Mikkola
lignin pretreatment and depolymerization due to it being rich
in C –OH.
In order to ll the theoretical photo redox gap of anthra-
and T. O. Salmi, Green Chem., 2014, 16, 2320–2343.
14 A. U. Chaudhari, D. Paul, D. Dhotre and K. M. Kodam, Water
Res., 2017, 122, 603–613.
a
quinone molecules in organic solvents, we used density func- 15 I. V. Kolesnichenko, P. R. Escamilla, J. A. Michael,
tional theory to describe the anthraquinone molecules in this
reaction and proposed the free radical theory of anthraquinone
V. M. Lynch, D. A. Vanden Bout and E. V. Anslyn, Chem.
Commun., 2018, 54, 11204–11207.
photocatalysis. This brings us to a further understanding of the 16 R. Wightman, J. Cockrell, R. W. Murray, J. Burnett and
catalytic mechanism of organic photocatalysts.
S. B. Jones, J. Am. Chem. Soc., 1976, 98, 2562–2570.
7 X. Lu, M. Zhou, Y. Li, P. Su, J. Cai and Y. Pan, Electrochim.
Acta, 2019, 320, 134552.
8 Y. Cheng, L. Wang, S. L u¨ , Y. Wang and Z. Mi, Ind. Eng. Chem.
Res., 2008, 47, 7414–7418.
1
1
1
Conflicts of interest
There are no conicts to declare.
9 E. Santacesaria, M. Di Serio, A. Russo, U. Leone and
R. Velotti, Chem. Eng. Sci., 1999, 54, 2799–2806.
Acknowledgements
20 J. Theurich, D. W. Bahnemann, R. Vogel, F. E. Ehamed,
G. Alhakimi and I. Rajab, Res. Chem. Intermed., 1997, 23,
This work is nancially supported by the National Key R&D
Program of China (2018YFB1501402), the Natural Science Foun-
dation of Guangdong Province (2017A030308010), the National
Natural Science Foundation of China (51576199, 51976225 and
247–274.
2
2
2
2
2
2
2
1 S. U. Ying-ying, Y. U. Yan-qing, Y. Pei-shan, W. Xin-ting and
Z. H. U. Xiao-bin, China Environ. Sci., 2009, 29, 1171–1176.
2 D. Petzold and B. Konig, Adv. Synth. Catal., 2018, 360, 626–
51536009), the DNL Cooperation Fund, CAS (DNL180302 and
630.
DNL201916), the “Transformational Technologies for Clean
Energy and Demonstration”, Strategic Priority Research Program
of the Chinese Academy of Sciences (No. XDA21060102), and the
Local Innovative and Research Teams Project of Guangdong Pearl
River Talents Program (2017BT01N092). In addition, special
thanks to Department of Chemistry of Shantou University for
providing calculation support.
3 H.-i. Kim, Y. Choi, S. Hu, W. Choi and J.-H. Kim, Appl. Catal.,
B, 2018, 229, 121–129.
4 R. Narobe, S. J. S. D u¨ sel, J. Iskra and B. K ¨o nig, Adv. Synth.
Catal., 2019, 361, 3998–4004.
5 I. M. Denekamp, M. Antens, T. K. Slot and G. Rothenberg,
ChemCatChem, 2018, 10, 1035–1041.
6 J. Zhao, D. Wu, W. Y. Hern ´a ndez, W.-J. Zhou, M. Capron and
V. V. Ordomsky, Appl. Catal., A, 2020, 590, 117277.
7 J. Ma, T. Su, M.-D. Li, W. Du, J. Huang, X. Guan and
D. L. Phillips, J. Am. Chem. Soc., 2012, 134, 14858–14868.
References
1
2
3
W. Zhang, M. Liu, H. Wu, J. Ding and J. Cheng, Tetrahedron 28 Y. Guo, Q. Song, J. Wang, J. Ma, X. Zhang and D. L. Phillips, J.
Lett., 2008, 49, 5336–5338. Org. Chem., 2018, 83, 13454–13462.
A. Sedrpoushan, M. Heidari and O. Akhavan, Chin. J. Catal., 29 K. Tickle and F. Wilkinson, Trans. Faraday Soc., 1965, 61,
017, 38, 745–757. 1981–1990.
L. Wang, X. Zhang, L. Yang, C. Wang and H. Wang, Catal. Sci. 30 H. Inoue, M. Hida, N. Nakashima and K. Yoshihara, J. Phys.
2
Technol., 2015, 5, 4800–4805.
Chem., 1982, 86, 3184–3188.
4
5
J. Luo and J. Zhang, J. Org. Chem., 2016, 81, 9131–9137.
D. O. Mountfort, D. White and R. A. Asher, Appl. Environ.
Microbiol., 1990, 56, 245–249.
31 M. Gronkiewicz, B. Kozankiewicz and J. Prochorow, Chem.
Phys. Lett., 1976, 38, 325–328.
32 B. Valeur, in Molecular Fluorescence: Principles and
Applications, John Wiley & Sons, Inc., 2001, ch. 3, pp. 34–71.
6
7
M. Fujihira, Y. Satoh and T. Osa, Nature, 1981, 293, 206–208.
F. Nastasi, A. Santoro, S. Serroni, S. Campagna, 33 Y. F. Ji, T. Fan and Y. Luo, Phys. Chem. Chem. Phys., 2020, 22,
N. Kaveevivitchai and R. P. Thummel, Photochem.
Photobiol. Sci., 2019, 18, 2164–2173.
H. Bai, X. Fang, C. Peng, Q. Liu, W. Xie, L. Jia and Z. Song, J.
Mol. Liq., 2019, 289, 111122.
1187–1193.
34 Y. Q. Huang and J. Lessard, Electroanalysis, 2016, 28, 2716–
2727.
35 H. Inagawa, S. Uchida, E. Yamaguchi and A. Itoh, Asian J.
Org. Chem., 2019, 8, 1411–1414.
8
9
F. Gao, X. Li, Y. Zhang, C. Huang and W. Zhang, ACS Omega,
2
019, 4, 13721–13732.
36 M. Ramseier, P. Senn and J. Wirz, J. Phys. Chem. A, 2003, 107,
3305–3315.
1
1
0 Y. Li and J.-G. Jiang, Food Funct., 2018, 9, 6063–6080.
1 K. Panthong, S. Hongthong, C. Kuhakarn, P. Piyachaturawat, 37 Y. Du, J. Xue, M. Li and D. L. Phillips, J. Phys. Chem. A, 2009,
K. Suksen, A. Panthong, N. Chiranthanut, P. Kongsaeree,
113, 3344–3352.
37022 | RSC Adv., 2020, 10, 37014–37022
This journal is © The Royal Society of Chemistry 2020