pubs.acs.org/joc
SCHEME 1. Selected Cyano-Substituted Pharmaceutical Prod-
ucts
Development of Pd/C-Catalyzed Cyanation
of Aryl Halides
,
†
†
Hannah Yu,* Rachel N. Richey, William D. Miller,
†
‡
Jiansheng Xu, and Scott A. May
†
†
Chemical Product Research and Development, Lilly
Research Laboratories, Eli Lilly and Company, Indianapolis,
‡
Indiana 46285, United States , and Shanghai
PharmaExplorer, Shanghai, China, 201203
Received October 13, 2010
A practical method for palladium-catalyzed cyanation of
aryl halides using Pd/C is described. The new method can
be applied to a variety of aryl bromide and active aryl
chloride substrates to effect efficient conversions. The
process features many advantages over existing cyanation
conditions and the practical utility of the process has been
demonstrated on scale.
palladium will interact with the cyanide ions to form un-
9
reactive complexes. To circumvent this issue, numerous
procedures have been developed to control the level of
cyanide in solution. Reagents with weakly ionizable
7a,c,d,g,k,m,n,q,r,w
M-CN bonds, such as zinc cyanide
and
(7) For representative examples of palladium-catalyzed cyanation of aryl
halides, see: (a) Tschaen, D. M.; Desmond, R.; King, A. O.; Fortin, M. C.;
Aromatic nitriles constitute a key component of numerous
commercial compounds, including dyes, herbicides, agro-
Pipik, B.; King, S.; Verhoeven, T. R. Synth. Commun. 1994, 24, 887.
(b) Anderson, B. A.; Bell, E. C.; Ginah, F. O.; Harn, N. K.; Pagh, L. M.;
Wepsiec, J. P. J. Org. Chem. 1998, 63, 8224. (c) Maligres, P. E. Tetrahedron
Lett. 1999, 40, 8193. (d) Jin, F.; Confalone, P. N. Tetrahedron Lett. 2000, 41,
3271. (e) Zanon, J.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2003,
125, 2890. (f) Sundermeier, M.; Zapf, A.; Mutyala, S.; Baumann, W.; Sans,
J.; Weiss, S.; Beller, M. Chem.;Eur. J. 2003, 9, 1828. (g) Chidambaram, R.
Tetrahedron Lett. 2004, 45, 1441. (h) Yang, C.; Williams, J. M. Org. Lett.
1
chemicals, and natural products. In particular, the motif is
present in an increasing number of pharmaceutical products
2
Scheme 1). The nitrile group is also an important precursor
(
for various functional groups such as amidines, amides, imidoe-
3
2
004, 6, 2837. (i) Schareina, T.; Zapf, A.; Beller, M. Chem. Commun. 2004,
1388. (j) Schareina, T.; Zapf, A.; Beller, M. J. Organomet. Chem. 2004, 689,
576. (k) Stazi, F.; Palmisano, G.; Turconi, M.; Santagostino, M. Tetrahe-
sters, benzamidines, amines, heterocycles, and aldehydes.
4
5
The Sandmeyer and Rosemund-Von Braun reactions
were reported in early examples in converting aryl halides to
4
dron Lett. 2005, 46, 1815. (l) Schareina, T.; Zapf, A.; Beller, M. Tetrahedron
Lett. 2005, 46, 2585. (m) Jensen, R. S.; Gajare, A. S.; Toyota, K.; Yoshifuji,
M.; Ozawa, F. Tetrahedron Lett. 2005, 46, 8645. (n) Hatsuda, M.; Seki, M.
Tetrahedron 2005, 61, 9908. (o) Weissman, S. A.; Zewge, D.; Chen, C. J. Org.
Chem. 2005, 70, 1508. (p) Grossman, O.; Gelman, D. Org. Lett. 2006, 8, 1189.
aryl cyanides. More recently, the transition metal-catalyzed
6
-8
cyanation has attracted widespread interest.
One of the
major challenges for development of robust cyanation con-
ditions lies in the fact that in the presence of cyanide ions,
(
(
q) Pitts, M. R.; McCormack, P.; Whittall, J. Tetrahedron 2006, 62, 4705.
r) Littke, A.; Soumeillant, M.; Kaltenback, R. F., III; Cherney, R. J.; Tarby,
C. M.; Kiau, S. Org. Lett. 2007, 9, 1711. (s) Schareina, T.; Zapf, A.;
Magerlein, W.; Muller, N.; Beller, M. Tetrahedron Lett. 2007, 48, 1087.
(t) Zhu, Y.; Cai, C. Synth. Commun. 2007, 37, 3359. (u) Ryberg, P. Org.
Process Res. Dev. 2008, 12, 540. (v) Ren, Y.; Liu, Z.; He, S.; Zhao, S.; Wang,
J.; Niu, R.; Yin, W. Org. Process Res. Dev. 2009, 13, 764. (w) Shevlin, M.
Tetrahedron Lett. 2010, 51, 4833.
(
1) (a) Larock, R. C. Comprehensive Organic Transformations; VCH:
New York, 1989; pp 819-995. (b) Grundmann, C. In Houben-Weyl:
Methoden der organischen Chemie, 4th ed.; Falbe, J., Ed.; Georg Thieme:
Stuttgart, Germany, 1985; Vol. E5, pp 1313-1527.
(
2) Kleemann, A.; Engel, J.; Kutscher, B.; Reichert, D. Pharmaceutical
Substances: Syntheses, Patents, Applications, 5th ed.; Georg Thieme: Stuttgart,
Germany, 2009.
(8) For representative examples of metal-catalyzed cyanation through
C-H functionalization, see: (a) Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu,
J.-Q. J. Am. Chem. Soc. 2006, 128, 6790. (b) Mariampillai, B.; Alliot, J.; Li,
M.; Lautens, M. J. Am. Chem. Soc. 2007, 129, 15372. (c) Jia, X.; Yang, D.;
Zhang, S.; Cheng, J. Org. Lett. 2009, 11, 4716. (d) Kim, J.; Chang, S. J. Am.
Chem. Soc. 2010, 132, 10272.
(9) (a) Sundermeier, M.; Zapf, A.; Beller, M. Angew. Chem., Int. Ed. 2003,
42, 1661. (b) Sundermeier, M.; Zapf, A.; Beller., M. Angew. Chem., Int. Ed.
2003, 42, 1661. (c) Dobbs, K. D.; Marshall, W. J.; Grushin, V. V. J. Am.
Chem. Soc. 2007, 129, 30. (d) Erhardt, S.; Grushin, V. V.; Kilpatrick, A. H.;
Macgregor, S. A.; Marshall, W. J.; Roe, D. C. J. Am. Chem. Soc. 2008, 130,
4828.
(
3) Rappoport, Z. Chemistry of the Cyano Group; John Wiley & Sons:
London, UK, 1970.
4) (a) Sandmeyer, T. Ber. Dtsch. Chem. Ges. 1884, 17, 1633. (b) Hodgson,
H. H. Chem. Rev. 1947, 40, 251. (c) Galli, C. Chem. Rev. 1988, 88, 765.
5) (a) Mowry, D. T. Chem. Rev. 1948, 42, 189. (b) Ellis, G. P.; Romney-
Alexander, T. M. Chem. Rev. 1987, 87, 779.
6) For reviews, see: (a) Farina, V. In Comprehensive Organometallic
(
(
(
Chemistry II; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon:
Oxford, UK, 1995; pp 225-226. (b) Sundermeier, M.; Zapf, A.; Beller, M.
Eur. J. Inorg. Chem. 2003, 3513.
DOI: 10.1021/jo102037y
r 2010 American Chemical Society
Published on Web 12/30/2010
J. Org. Chem. 2011, 76, 665–668 665