visible-light photoredox catalytic synthesis of benzothia-
zoles via a radical CꢀH functionalization/CꢀS bond forma-
tion using dioxygen as the terminal oxidant.
Table 1. Optimization of Reaction Conditions
2-Arylbenzothiazoles are an important class of com-
pounds with broad biological and pharmaceutical pro-
perties.8,9 Typically, benzothiazoles are prepared via oxi-
dative intramolecular cyclization of thiobenzanilides.10ꢀ12
The use of a stoichiometric or excess amount of oxidants
limits the functionality tolerance and is environmentally
unfriendly. Transition-metal (Pd and Cu) catalyzed direct
CꢀH functionalization/cyclizaiton of thiobenzanilides is
very attractive as prefunctionalization is unnecessary.11e,l,m
However, the reported methods involved more than one
type of metal and a high reaction temperature, which limit
their synthetic applications.
catalyst
product
(yield)
entry substrate
(1 mol %)
solvent base
1
2
1a
1a
1a
1a
1b
1b
1b
1b
1b
1b
Ru(bpy)3Cl2•6H2O DMF
ꢀ
3a
Ru(bpy)3Cl2•6H2O CH3CN ꢀ
3a
3a
3a
3b
3b
3
Ru(bpy)3Cl2•6H2O CH2Cl2
Ru(bpy)3Cl2•6H2O DMSO
ꢀ
ꢀ
4
5
Ru(bpy)3Cl2•6H2O CH3CN ꢀ
Believing that the sulfur in a thioamide could be oxidized
in a Ru(bpy)32þ photoredox cycle to form a radical inter-
mediate, we started our investigation of visible-light driven
synthesis of benzothiazoles using thioamides 1a and 1b.
Ru(bpy)3Cl2•6H2O was used as the catalyst, and the reac-
tion was placed under a household 14 W fluorescent light.
It was found that without base all the reactions afforded
3a and 3b. No desired product 2a or 2b was observed in
various solvents (Table 1, entries 1ꢀ6).11e,13
6
Ru(bpy)3Cl2•6H2O DMF
Ru(bpy)3Cl2•6H2O DMF
ꢀ
7
DBU 2b (86%)a
DBU 2b (87%)a
DMAP N.R.
8
Ru(bpy)3(PF6)2
Ru(bpy)3(PF6)2
Ru(bpy)3(PF6)2
DMF
DMF
DMF
9
10
Proton 3b
sponge
11
12
13
14
15
16
17
1b
1b
1b
1b
1b
1b
1b
Ru(bpy)3(PF6)2
Ru(bpy)3(PF6)2
Ru(bpy)3(PF6)2
Ru(bpy)3(PF6)2
Ru(bpy)3(PF6)2
ꢀ
DMF
DMF
DMF
DMF
DMF
DMF
DMF
TMP 2b (21%)b
DBN 2b (81%)a
DBU 2b (85%)b,c
K2CO3 2b (71%)a,c
DBU d 2b (80%)a,c
DBU N.R.c
Bases were added to promote the formation of a
more oxidizable imidothiolate anion. To our delight,
Ru(bpy)3(PF6)2
DBU N.R.c,e
a HPLC yield. b Isolated yield. c Under 5% O2 balloon. d 0.5 equiv of
DBU was used. e Reaction was carried out in the dark.
(8) For review: Westwell, A. D.; Weekes, A. A. Curr. Med. Chem.
2009, 16, 2430.
(9) For selected recent examples: (a) Sun, Q.; Wu, R.; Cai, S.; Lin, Y.;
Sellers, L.; Sakamoto, K.; He, B.; Peterson, B. R. J. Med. Chem. 2011,
54, 1126. (b) Lim, C. S.; Masanta, G.; Kim, H. J.; Han, J. H.; Kim,
H. M.; Cho, B. R. J. Am. Chem. Soc. 2011, 133, 11132. (c) Konig, J.;
Wyllie, S.; Wells, G.; Stevens, M. F.; Wyatt, P. G.; Fairlamb, A. H.
J. Biol. Chem. 2011, 286, 8523. (d) Ha, Y. M.; Park, J. Y.; Park, Y. J.; Park,
D.; Choi, Y. J.; Kim, J. M.; Lee, E. K.; Han, Y. K.; Kim, J.-A.; Lee, J. Y.;
Moon, H. R.; Chung, H. Y. Bioorg. Med. Chem. Lett. 2011, 21, 2445.
(e) Cellier, M.; Fabrega, O. J.; Fazackerley, E.; James, A. L.; Orenga, S.;
Perry, J. D.; Salwatura, V. L.; Stanforth, S. P. Bioorg. Med. Chem. 2011,
19, 2903. (f) Alavez, S.; Vantipalli, M. C.; Zucker, D. J. S.; Klang, I. M.;
Lithgow, G. J. Nature 2011, 472, 226.
(10) Metzger, J. In Comprehensive Heterocyclic Chemistry; Katritzky,
A. R., Rees, C. W., Eds.; Pergamon Press: Oxford, 1984; Vol. 6, pp 322ꢀ326.
(11) For selected recent reports: (a) Su, F.; Mathew, S. C.; Moehlmann,
L.; Antonietti, M.; Wang, X.; Blechert, S. Angew. Chem., Int. Ed.
2011, 50, 657. (b) Ranjit, S.; Liu, X. Chem.;Eur. J. 2011, 17, 1105. (c)
Tamba, S.; Okubo, Y.; Tanaka, S.; Monguchi, D.; Mori, A. J. Org.
Chem. 2010, 75, 6998. (d) Kumar, A.; Sharma, S.; Maurya, R. A.
Tetrahedron Lett. 2010, 51, 6224. (e) Inamoto, K.; Hasegawa, C.;
Kawasaki, J.; Hiroya, K.; Doi, T. Adv. Synth. Catal. 2010, 352, 2643.
(f) Hachiya, H.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed.
2010, 49, 2202. (g) Feng, E. G.; Huang, H.; Zhou, Y.; Ye, D. J.; Jiang,
H. L.; Liu, H. J. Comb. Chem. 2010, 12, 422. (h) Bose, D. S.; Idrees, M.
Synthesis 2010, 1983. (i) Saha, P.; Ramana, T.; Purkait, N.; Ali, M. A.;
Paul, R.; Punniyamurthy, T. J. Org. Chem. 2009, 74, 8719. (j) Moghaddam,
F. M.; Zargarani, D. J. Sulfur Chem. 2009, 30, 507. (k) Ma, D.; Xie, S.;
Xue, P.; Zhang, X.; Dong, J.; Jiang, Y. Angew. Chem., Int. Ed. 2009,
48, 4222. (l) Joyce, L. L.; Batey, R. A. Org. Lett. 2009, 11, 2792.
(m) Inamoto, K.; Hasegawa, C.; Hiroya, K.; Doi, T. Org. Lett. 2008, 10,
5147. (n) Jackson, Y. A.; Downer-Riley, N. K. Tetrahedron 2007, 63,
10276. (o) Fujiwara, S. I.; Asanuma, Y.; Shin-Ike, T.; Kambe, N. J. Org.
Chem. 2007, 72, 8087.
with 1,8-diazabicycloundec-7-ene (DBU), benzothiazole 2b
formed in 86% HPLC yield (Table 1, entry 7). Switching the
catalyst toRu(bpy)3(PF6)2 afforded a similar result (Table 1,
entry 8). 4-Dimethylaminopyridine (DMAP) did not effec-
tively promote the reaction (Table 1, entry 9). Addition of 1,
8-bis(dimethylamino)naphthalene (proton sponge) gave 3b
as the only product (Table 1, entry 10). With 2,2,6,6-tetra-
methylpiperidine (TMP), 2b was isolated in 21% yield
(Table 1, entry 11). The use of 1,5-diazabicyclo(4.3.0)non-
5-ene (DBN), a base similar to DBU, afforded 2b in 81%
HPLC yield.
We then questioned what was the terminal oxidant in
thisoxidative cyclization reaction, asthe reaction was done
under a N2 atmosphere. The net reaction would generate
two hydrogen atoms without an oxidant. A reaction was
carried out in an apparatus to measure the gas volume
change. To our surprise, it was observed that a stoichio-
metric amount of gas was consumed. Further investigation
revealed that dioxygen from the residual air in the appa-
ratus participated in the reaction. Interestingly, the
reaction is very sensitive to the level of the dioxygen
concentration. The reaction works very well under a low
level of dioxygen. Introduction of less than a stoichio-
metric amount of dioxygen caused a partial reaction with
complete consumption of dioxygen. However, when the
reaction was carried out under an air atmosphere (∼21%
oxygen), 74% of the benzothiazole (2b) was formed along
with some undesired side product 3b. When 100% oxygen
(12) For recent benzothiazole formation through radical cyclization:
(a) Bose, D. S.; Idrees, M. Synthesis 2010, 398. (b) Jackson, Y. A.;
Downer-Riley, N. K. Tetrahedron 2008, 64, 7741. (c) Inamoto, K.;
Hasegawa, C.; Hiroya, K.; Doi, T. Org. Lett. 2008, 10, 5147. (d) Bose,
D. S.; Idrees, M. Tetrahedron Lett. 2007, 48, 669. (e) Bose, D. S.; Idrees,
M. J. Org. Chem. 2006, 71, 8261. (f) Mu, X. J.; Zou, J. P.; Zeng, R. S.;
Wu, J. C. Tetrahedron Lett. 2005, 46, 4345.
(13) Inamoto, K.; Shiraishi, M.; Hiroya, K.; Doi, T. Synthesis 2010,
3087.
Org. Lett., Vol. 14, No. 1, 2012
99