7430
Y. S. Song et al. / Tetrahedron Letters 47 (2006) 7427–7430
Table 2 (continued)
b
Entry
Boronic acid
Product
Yield (%)
OMe
S
12
6l
S
7l
52
(
HO) B
2
O
O
a
Reaction conditions: 5 (1.0 mmol), ArB(OH)
50 °C, 5 min.
Isolated yields.
2
(1.2 mmol), Pd(PPh
3
)
4
(4 mol %), Na
2
CO
3
(2.4 mmol), dioxane/H
2
O (4 mL/1 mL), microwave
1
b
Acknowledgments
9. For reviews, see: (a) Bellina, F.; Carpita, A.; Rossi, R.
Synthesis 2004, 2419; (b) Pershichini, P. J. Curr. Org.
Chem. 2003, 7, 1725; (c) Hassan, J.; S e´ vignon, M.; Gozzi,
C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359;
We thank the Korea Research Institute of Chemical
Technology (KK-0601-A2) and the Ministry of Com-
merce, Industry, and Energy (TS056-09) for financial
support of these studies.
(
d) Kotha, S.; Lahiri, S.; Kashinath, D. Tetrahedron 2002,
58, 9633; (e) Suzuki, A. J. Organomet. Chem. 1999, 576,
147; (f) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95,
2457.
1
0. Pd-catalyzed acylation of 4-methoxy-3-tributylstannyl-2-
furanone has been described, see: (a) Ley, S. V.; Wads-
worth, D. J. Tetrahedron Lett. 1989, 30, 1001; For
the direct alkylation and acylation of 3-lithiated 4-alkoxy-
2-triisopropylsilyloxyfuranes, see: (b) Paintner, F. F.;
Allmendinger, L.; Bauschke, G. Synlett 2005, 2735, and
references cited therein.
References and notes
1
. (a) Akiyoshi, Y.; Tsutsumiuchi, K.; Narita, I.; Okada, T.;
Nakamura, K.; Nakamura, A. Jpn. Kokai Tokkyo Koho,
JP 2000053670, 2000; Chem. Abstr. 2000, 132, 166117; (b)
Wingert, H.; Sauter, H.; Benoit, R.; Roehl, F.; Ammer-
man, E.; Lorenz, G. Eur. Pat. Appl. 567828, 1993; Chem.
Abstr. 1993, 121, 82723.
11. For the synthesis of 4-substituted-2(5H)-furanones via
Suzuki–Miyaura coupling reaction, see: (a) Bellina, F.;
Anselmi, C.; Martina, F.; Rossi, R. Eur. J. Org. Chem.
2003, 12, 2290; (b) Boukouvalas, J.; Lachance, N.; Ouellet,
M.; Trudeau, M. Tetrahedron Lett. 1998, 39, 7665.
12. Mathews, C. J.; Taylor, J.; Tyte, M. J.; Worthington, P. A.
Synlett 2005, 538.
13. (a) Song, Y. S.; Kim, B. T.; Heo, J.-N. Tetrahedron Lett.
2005, 46, 5987; (b) Heo, Y.; Song, Y. S.; Kim, B. T.; Heo,
J.-N. Tetrahedron Lett. 2006, 47, 3091; (c) Kim, H. H.;
Lee, C. H.; Song, Y. S.; Park, N. K.; Kim, B. T.; Heo,
J.-N. Bull. Korean Chem. Soc. 2006, 27, 191.
2
. (a) Pour, M.; Spulak, M.; Balsanek, V.; Kunes, J.; Buchta,
V.; Waisser, K. Bioorg. Med. Chem. Lett. 2000, 10, 1893;
(
b) Pour, M.; Spulak, M.; Buchta, V.; Kubanova, P.;
Voprsalova, M.; Wsol, V.; Fakova, H.; Koudelka, P.;
Pourova, H.; Schiller, R. J. Med. Chem. 2001, 44, 2701; (c)
Pour, M.; Spulak, M.; Balsanek, V.; Kunes, J.; Kubanova,
P.; Buchta, V. Bioorg. Med. Chem. 2003, 11, 2843.
. (a) Lattmann, E.; Bunn, S.; Niamsanit, S.; Sattayasai, N.
Bioorg. Med. Chem. 2005, 15, 919; (b) Bellina, F.;
Anselmi, C.; Viel, S.; Mannina, L.; Rossi, R. Tetrahedron
3
4
2
001, 57, 9997.
14. For recent reviews of microwave heating technology, see:
(a) Kappe, C. O. Angew. Chem., Int. Ed. 2004, 43, 6250;
(b) Roberts, B. A.; Strauss, C. R. Acc. Chem. Res. 2005,
38, 653; (c) Loupy, A. Microwaves in Organic Synthesis;
Wiley-VCH: Weinheim, 2002; (d) Kappe, C. O.; Stadler,
A. Microwaves in Organic and Medicinal Chemistry;
Wiley-VCH: Weinheim, 2005; (e) Lidstr o¨ m, P.; Tierney,
J.; Wathey, B.; Westman, J. Tetrahedron 2001, 57, 9225.
15. Kowalski, C. J.; Weber, A. E.; Fields, K. W. J. Org. Chem.
1982, 47, 5088.
. (a) Black, W. C.; Andersen, D. R.; Brideau, C.; Chauret,
N.; Chern, R. T.; Chen, J.; Drag, M.; Fortin, R.; Hanson,
P.; Haven, M.; Hickey, G. J.; McCann, M. E.; Patrick, D.;
Wang, Z.; Young, R. N. Drugs Future 2002, 27, 136; (b)
Almansa, C.; Alf o´ n, J.; Cavalcanti, F. L.; G o´ mez, L.;
Miralles, A. Drugs Future 2002, 27, 106; (c) Rahim, M. A.;
Rao, P. N. P.; Knaus, E. E. Bioorg. Med. Chem. Lett.
2
002, 12, 2753; (d) Pal, M.; Veeramaneni, V. R.; Naga-
belli, M.; Kalleda, S. R.; Misra, P.; Casturi, S. R.;
Yeleswarapu, K. R. Bioorg. Med. Chem. Lett. 2003, 13,
16. General procedure. All reactions were conducted by using a
TM
1
639.
. Zapf, S.; Anke, T.; Sterner, O. Acta Chem. Scand. 1995,
9, 233.
Biotage Initiator EXP
microwave reactor. To a
5
6
thick-wall borosilicate glass vial (10 mL) were added 3-
4
bromo-2(5H)-furanone 5 (1 mmol), Pd(PPh ) (4 mol %),
3
4
. Prasit, P.; Wang, Z.; Brideau, C.; Chan, C. C.; Charleson,
S.; Cromilish, W.; Ethier, D.; Evans, J. F.; Ford-Hutch-
inson, A. W.; Gauthier, J. Y.; Gordon, R.; Gyay, J.;
Gresser, M.; Kargman, S.; Kennedy, B.; Leblanc, Y.;
Leger, S.; Mancini, J.; O’Neill, G. P.; Ouellet, M.;
Percival, M. D.; Perrier, H.; Riendeau, D.; Rodger, I.;
Tagari, P.; Therien, M.; Vickers, P.; Wong, E.; Xu, L.-J.;
Young, R. N.; Zamboni, R. Bioorg. Med. Chem. Lett.
arylboronic acid (1.2 mmol), and Na CO (2.4 mmol)
2 3
sequentially. The mixture was dissolved in dioxane/H O
2
(4 mL/1 mL) and degassed with argon for 5 min. Then, the
reaction vial was sealed and placed in the microwave
reactor and irradiated at 150 °C for 5 min. After cooling to
room temperature, the mixture was diluted with EtOAc,
dried over MgSO , and filtered through Celite. The filtrate
4
was concentrated in vacuo giving a residue which was
1
999, 9, 1773.
subjected to silica gel flash column chromatography
(EtOAc/hexanes). The spectral data for 7c: H NMR
1
7
. Verniest, G.; De Kimpe, N. Synlett 2005, 947, and
references cited therein.
. (a) Kayser, M. M.; Breau, L.; Eliev, S.; Morand, P.; Ip, H.
S. Can. J. Chem. 1986, 64, 104; (b) Knight, D. W.;
Pattenden, G. J. Chem. Soc., Perkin Trans. 1 1979,
(300 MHz, CDCl ) d 7.84 (d, 2H, J = 8.7 Hz), 7.39 (d, 2H,
3
1
3
8
J = 8.7 Hz), 4.87 (s, 2H), 4.01 (s, 3H);
C NMR
(125 MHz, CDCl ) d 173.2, 172.2, 133.2, 128.7, 128.4,
3
+
127.7, 101.6, 64.4, 58.0; MS (EI) m/z [M] for C H ClO :
1
1
9
3
62.
calcd 224.02, found 224 (100), 195 (62), 152 (65), 123 (25).