ARTICLES
a
b
[Ir(OMe)(cod)]2 (1.5 mol%)
Ligand (3.0 mol%)
O
O
N
O
N(hex)2
+
B2pin2
N(hex)2
Ha
N
pinB
Hc
p-Xylene, 25 °C, 16 h
N
N
CF3
1f
CF3
Hb
2a
6f
(1.5 equiv.)
3a
Ligand
meta/para
Yield (%)
3a
1a
Entry
3a/1a
H
a (ppm)
Hb (ppm) Hc (ppm)
3a
95
90
18
(mM) (mM)
1.6
3a-Me1
90
99
98
0.84
1.0
3a-Me2
3h
1
2
3
2.5
2.5
0
1/0
1/1
5.65
5.78
3.60
3.74
5.88
3.63
3.65
3.89
2.5
N
H
O
N
dtbpy
0.96
*
1/64 7.00–7.50
2.5 160
N
N
bpy +
99
1.1
1H NMR spectra were measured using benzene-d6.
Me
Cy
N-Ph,N´-Cy-urea
3a-Me1
O
N
Cy
N
H
N
O
N
O
N
Me
N
N
H
Hd
N
He
N
N
N
N
3h
Me
Cy
Me
3a-Me1
3a-Me2
tBu
O
3a-Me1
(mM)
1a
(mM)
Entry
3a-Me1/1a
Hd (ppm) He (ppm)
Cy
tBu
N
N
H
N
H
N
N
4
5
6
2.5
2.5
2.5
0
1/0
6.26
6.26
6.37
3.91
3.91
3.92
N
2.5
1/1
bpy
N-Ph-N´-Cy-urea
dtbpy
160
1/64
1H NMR spectra were measured using benzene-d6.
Figure 3 | Mechanistic support for the importance of hydrogen bonding between the catalyst and substrates in controlling regioselectivity. a, 1H NMR
chemical shift changes caused by interaction between ligand 3a and amide 1a or 3a-Me1 and 1a. b, Comparison of product meta/para ratios using 3a,
3a-Me1, 3a-Me2, 3h, dtbpy and a mixture of bpy and a urea derivative. *Because the signal overlapped with aromatic signals, the value of the chemical shift
could not be determined.
7. Truong, T. & Daugulis, O. Directed functionalization of C–H bonds: now also
meta selective. Angew. Chem. Int. Ed. 51, 11677–11679 (2012).
8. Cho, J.-Y., Tse, M. K., Holmes, D., Maleczka, R. E. Jr & Smith, M. R. III.
concept will give a general solution for controlling the regioselectiv-
ity of C–H bond transformations and other reactions, without the
need for directing groups.
Remarkably selective iridium catalysts for the elaboration of aromatic C–H
bonds. Science 295, 305–308 (2002).
9. Ishiyama, T. et al. Mild iridium-catalyzed borylation of arenes. High turnover
Methods
Full experimental details and characterization of the compounds can be found in the
numbers, room temperature reactions, and isolation of a potential intermediate.
J. Am. Chem. Soc. 124, 390–391 (2002).
10. Ishiyama, T., Takagi, J., Hartwig, J. F. & Miyaura, N. A stoichiometric aromatic
C–H borylation catalyzed by iridium(I)/2,2′–bipyridine complexes at room
temperature. Angew. Chem. Int. Ed. 41, 3056–3058 (2002).
11. Murphy, J. M., Liao, X. & Hartwig, J. F. Meta halogenation of 1,3-disubstituted
arenes via iridium-catalyzed arene borylation. J. Am. Chem. Soc. 129,
15434–15435 (2007).
12. Mkhalid, I. A. I., Barnard, J. H., Marder, T. B., Murphy, J. M. & Hartwig, J. F.
C–H activation for the construction of C–B bonds. Chem. Rev. 110,
890–931 (2010).
Supplementary Information.
General procedure for meta-selective C(sp2)–H borylation. A mixture of
[Ir(OMe)(cod)]2 (2.5 mg, 3.8 μmol, 1.5 mol%), ligand 3a (2.8 mg, 7.5 μmol, 3.0 mol%)
and bis(pinacolato)diboron (2a) (95.2 mg, 0.375 mmol, 1.50 equiv.) was added to a
solution of a benzamide derivative (0.250 mmol, 1.0 equiv.) in p-xylene (1.5 ml).
The mixture was then stirred at 25 °C for 16 h. The product was isolated by recycling
preparative HPLC to give a meta/para mixture of borylated products (or only a
meta-borylated product).
Received 31 January 2015; accepted 8 July 2015;
published online 17 August 2015
13. Hurst, T. E. et al. Iridium-catalyzed C–H activation versus directed ortho
metalation: complementary borylation of aromatics and heteroaromatics. Chem.
Eur. J. 16, 8155–8161 (2010).
References
1. Kakiuchi, F. & Kochi, T. Transition-metal-catalyzed carbon–carbon bond
formation via carbon–hydrogen bond cleavage. Synthesis 3013–3039 (2008).
2. Chen, X., Engle, K. M., Wang, D.-H. & Yu, J.-Q. Palladium(II)-catalyzed C–H
activation/C–C cross-coupling reactions: versatility and practicality. Angew.
Chem. Int. Ed. 48, 5094–5115 (2009).
14. Chen, C. & Hartwig, J. F. Rhodium-catalyzed intermolecular C–H silylation of
arenes with high steric regiocontrol. Science 343, 853–857 (2014).
15. Zhang, Y.-H., Shi, B.-F. & Yu, J.-Q. Pd(II)-catalyzed olefination of electron-deficient
arenes using 2,6-dialkylpyridine ligands. J. Am. Chem. Soc. 131, 5072–5074 (2009).
16. Ye, M., Gao, G.-L. & Yu, J -Q. Ligand-promoted C-3 selective C–H olefination of
pyridines with Pd catalysts. J. Am. Chem. Soc. 133, 6964–6967 (2011).
17. Ye, M. et al. Ligand-promoted C3-selective arylation of pyridines with Pd catalysts:
gram-scale synthesis of ( )-preclamol. J. Am. Chem. Soc. 133, 19090–19093 (2011).
18. Saidi, O. et al. Ruthenium-catalyzed meta sulfonation of 2-phenylpyridines.
J. Am. Chem. Soc. 133, 19298–19301 (2011).
3. Colby, D. A., Bergman, R. G. & Ellman, J. A. Rhodium-catalyzed C–C bond
formation via heteroatom-directed C–H bond activation. Chem. Rev. 110,
624–655 (2010).
4. Kuninobu, Y. & Takai, K. Organic reactions catalyzed by rhenium carbonyl
complexes. Chem. Rev. 111, 1938–1953 (2011).
5. Rouquet, G. & Chatani, N. Catalytic functionalization of C(sp2)–H and
C(sp3)–H bonds using bidentate directing groups. Angew. Chem. Int. Ed. 52,
11726–11743 (2013).
19. Hofmann, N. & Ackermann, L. meta-Selective C–H bond alkylation with
secondary alkyl halides. J. Am. Chem. Soc. 135, 5877–5884 (2013).
20. Phipps, R. J. & Gaunt, M. J. A meta-selective copper-catalyzed C–H bond
arylation. Science 323, 1593–1597 (2009).
6. Zhang, X.-S., Chen, K. & Shi, Z.-J. Transition metal-catalyzed direct nucleophilic
addition of C–H bonds to carbon–heteroatom double bonds. Chem. Sci. 5,
2146–2159 (2014).
5
© 2015 Macmillan Publishers Limited. All rights reserved