3766
R. J. Kalbasi et al. / Tetrahedron Letters 53 (2012) 3763–3766
Table 3
References and notes
Catalyst reusability for the Heck reactiona,b
1. Gao, Z.; Feng, Y.; Cui, F.; Hua, Z.; Zhou, J.; Zhu, Y.; Shi, J. J. Mol. Catal. A: Chem.
Cycle
Yieldc (%)
Pd content of catalystd (mmol)
2011, 336, 51–57.
Fresh
98
98
98
98
98
97
97
96
96
96
95
0.1280
0.1280
0.1280
0.1280
0.1280
0.1279
0.1279
0.1279
0.1279
0.1279
0.1278
2. Polshettiwar, V.; Hesemann, P.; Moreau, J. J. E. Tetrahedron 2007, 63, 6784–
6790.
3. Qiao, K.; Sugimura, R.; Bao, Q.; Tomida, D.; Yokoyama, C. Catal. Commun. 2008,
9, 2470–2474.
4. Jiang, J. Z.; Cai, C. J. Colloid Interface Sci. 2006, 299, 938–943.
5. Evangelisti, C.; Panziera, N.; Pertici, P.; Vitulli, G.; Salvadori, P.; Battocchio, C.;
Polzonetti, G. J. Catal. 2009, 262, 287–293.
6. Luo, C.; Zhang, Y.; Wang, Y. J. Mol. Catal. A: Chem. 2005, 229, 7–12.
7. Redona, R.; GarciaPena, N. G.; Saldivar, V. M. U.; Garcia, J. J. J. Mol. Catal. A:
Chem. 2009, 300, 132–141.
1
2
3
4
5
6
7
8
9
10
8. Zhao, F.; Bhanage, B. M.; Shirai, M.; Arai, M. J. Mol. Catal. A: Chem. 1999, 142,
383–388.
9. Alimardanov, A.; Vondervoort, L. S.; Vries, A. H. M.; Vries, J. G. Adv. Synth. Catal.
2004, 346, 1812–1817.
a
Reaction conditions: Pd-PVP/CKT-3 (0.12 g), iodobenzene (1 mmol), styrene
(2 mmol), K2CO3 (5 mmol), H2O (5 mL), 60 °C, 1 h.
10. Reetz, M. T.; Vries, J. G. Chem. Commun. 2004, 14, 1559–1563.
11. Amatore, C.; Jutand, A. Acc. Chem. Res. 2000, 33, 314–321.
12. Rocaboy, C.; Gladysz, J. A. Org. Lett. 2002, 4, 1993–1996.
13. Schmidt, A. F.; Smirnov, V. V. J. Mol. Catal. A: Chem. 2003, 203, 75–78.
14. Yang, X.; Fei, Z.; Zhao, D.; Ang, W. H.; Li, Y.; Dyson, P. J. Inorg. Chem. 2008, 47,
3292–3297.
b
E/Z stereoselectivity was higher than 99:1 (determined by 1H NMR
spectroscopy).
c
Isolated yield of the E isomer.
Measured by ICP-AES.
d
15. Beletskaya, I. P.; Kashin, A. N.; Khotina, I. A.; Khokhlovc, A. R. Synlett 2008, 1,
1547–1552.
16. Kim, T. W.; Ryoo, R.; Gierszal, K. P.; Jaroniec, M.; Solovyov, L. A.; Sakamotod, Y.;
Terasaki, O. J. Mater. Chem. 2005, 15, 1560–1571.
17. Darmstadt, H.; Roy, C.; Kaliaguine, S.; Choi, S. J.; Ryoo, R. Carbon 2002, 40,
2673–2683.
18. Ryoo, R.; Joo, S. H.; Kruk, M.; Jaroniec, M. Adv. Mater. 2001, 13, 677–681.
19. Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R. Nature 2001,
412, 169–172.
20. Antolini, E. Appl. Catal. B: Environ. 2009, 88, 1–24.
21. Wang, X.; Liu, R.; Waje, M. M.; Chen, Z.; Yan, Y.; Bozhilov, K. N.; Feng, P. Chem.
Mater. 2007, 19, 2395–2397.
22. Liu, R.; Wang, X.; Zhao, X.; Feng, P. Carbon 2008, 46, 1664–1669.
23. Tanaka, S.; Nishiyama, N.; Egashira, Y.; Ueyama, K. Chem. Commun. 2005,
2125–2127.
shown in Table 3. After each cycle the catalyst was filtered, rinsed
with water (10 mL), diethyl ether and acetone (3 Â 5 mL), and then
dried in an oven at 60 °C before reuse in the Heck reaction. The re-
sults showed that Pd-PVP/CKT-3 could be reused at least 10 times
without any significant loss of activity/selectivity. The catalyst also
exhibited high stability over the 10 recycles (Table 3).
The amount of leached Pd in the reaction solution was mea-
sured by the ICP-AES technique (Table 3). The Pd content of the
catalyst (after 10 cycles) measured by ICP-AES was 1.065 mmol g
À1, which was about 1% lower than in the fresh catalyst (Table 3).
In conclusion, we have described the application of a cubic mes-
oporous carbon as an ideal support for poly(N-vinyl-2-pyrrolidone)
and Pd nanoparticles. A novel polymer–organic hybrid material, Pd
nanoparticle-PVP/CKT-3, was prepared by a simple method. The
catalytic activity of this catalyst proved excellent for the Heck reac-
tions of various aryl halides at 60 °C under aerobic conditions.
Additionally, water was employed as an environmentally benign
solvent for this reaction. This heterogeneous catalyst can replace
a homogeneous catalyst in view of the following advantages: (a)
high catalytic activity under mild reaction conditions, and (b) reus-
ability of the catalyst without any significant loss in the yield.
24. Xing, R.; Liu, Y.; Wang, Y.; Chen, L.; Wu, H.; Jiang, Y.; He, M.; Wu, P. Microporous
Mesoporous Mater. 2007, 105, 41–48.
25. Peng, L.; Philippaerts, A.; Ke, X.; Van Noyen, J.; De Clippel, F.; Van Tendeloo, G.;
Jacobs, P. A.; Sels, B. F. Catal. Today 2010, 150, 140–146.
26. Kalbasi, R. J.; Mosaddegh, N. J. Solid State Chem. 2011, 184, 3095–3103.
27. Kalbasi, R. J.; Mosaddegh, N. Mater. Chem. Phys. 2011, 130, 1287–1293.
28. Teranishi, T.; Miyake, M. Chem. Mater. 1998, 10, 594–600.
29. Gniewek, A.; Trzeciak, A. M.; Ziolkowski, J. J.; Kepinski, L.; Wrzyszcz, J.; Tylus,
W. J. Catal. 2005, 229, 332–343.
30. Crisp, G. T. Chem. Soc. Rev. 1998, 27, 427–436.
31. Sawant, D.; Wagh, Y.; Bhatte, K.; Panda, A.; Bhanage, B. Tetrahedron Lett. 2011,
52, 2390–2393.
32. Selvakumar, K.; Zapf, A.; Beller, M. Org. Lett. 2002, 4, 3031–3033.
33. Prockl, S.; Kleist, W.; Gruber, M. A.; Kohler, K. Angew. Chem., Int. Ed. 2004, 43,
1917–1918.
34. Prockl, S.; Kleist, W.; Gruber, M. A.; Kohler, A. K. Angew. Chem., Int. Ed. 2004, 43,
1881–1882.
Acknowledgements
35. Kohler, K.; Kleist, W.; Prockl, S. S. Inorg. Chem. 2007, 46, 1876–1883.
36. Iranpoor, N.; Firouzabadi, H.; Tarassoli, A.; Fereidoonnezhad, M. Tetrahedron
2010, 66, 2415–2421.
Support by the Islamic Azad University, Shahreza Branch
(IAUSH) Research Council and Center of Excellence in Chemistry
is gratefully acknowledged.
37. Leng, Y.; Yang, F.; Wei, K.; Wu, Y. Tetrahedron 2010, 66, 1244–1248.