Chemical Science
Edge Article
mixtures compositions and all measure data can be found in
the ESI (Tables S5–S9 and Fig. S17–S22†).
Chem. Soc., 2017, 139, 10302; (i) M. Lu, Y. Su, P. Zhao,
X. Ye, Y. Cai, X. Shi, E. Masson, F. Li, J. L. Campbell and
H. Chen, Chem.–Eur. J., 2018, 24, 2144.
Density functional theory (DFT) calculations have been per-
formed with the mPW1PW91 density functional21 and with the
LanL2DZ basis set for the gold atoms and the cc-pVDZ basis set
for the remaining elements as implemented in Gaussian 09.22
The geometries were fully optimized and the results were
controlled by Hessian matrix calculations. The computed
¨
¨
5 (a) A. S. K. Hashmi, I. Braun, P. Nosel, J. Schadlich,
M. Wieteck, M. Rudolph and F. Rominger, Angew. Chem.,
Int. Ed., 2012, 51, 4456; (b) A. S. K. Hashmi, M. Wieteck,
¨
I. Braun, P. Nosel, L. Jongbloed, M. Rudolph and
F. Rominger, Adv. Synth. Catal., 2012, 354, 555; (c)
´
´
vibrational frequencies were scaled by 0.97 in the nger-print
A. Gomez-Suarez and S. P. Nolan, Angew. Chem., Int. Ed.,
2012, 51, 8156; (d) V. Vreeken, D. L. J. Broere, A. C. H. Jans,
M. Lankelma, J. N. H. Reek, M. A. Siegler and J. I. van der
Vlugt, Angew. Chem., Int. Ed., 2016, 55, 10042; (e) S. Ferrer
and A. M. Echavarren, Organometallics, 2018, 37, 781.
region and by 0.945 above 2000 cmꢂ1
.
The nal IR
9,23,24
spectra were convoluted with a Gaussian function with a full
width at half maximum of 3 cmꢂ1. The optimized geometries,
energies, and IR spectra are in the ESI (Tables S10 and S11,
Fig. S23–S26†).
¨
6 (a) G. Seidel, C. W. Lehmann and A. Furstner, Angew. Chem.,
Int. Ed., 2010, 49, 8466 and references therein;(b) T. J. Brown,
D. Weber, M. R. Gagne and R. A. Widenhoefer, J. Am. Chem.
Soc., 2012, 134, 9134; (c) A. Zhdanko and M. E. Maier,
Organometallics, 2013, 32, 2000; (d) A. Zhdanko and
M. E. Maier, Chem.–Eur. J., 2014, 20, 1918.
Conflicts of interest
There are no conicts to declare.
7 (a) J. Roithova, S. Jankova, L. Jasikova, J. Vana and
S. Hybelbauerova, Angew. Chem., Int. Ed., 2012, 51, 8378;
(b) Y. Oonishi, A. Gomez-Suarez, A. R. Martin and
S. P. Nolan, Angew. Chem., Int. Ed., 2013, 52, 9767; (c)
Acknowledgements
The project was funded by the European Research Council (ERC
CoG No. 682275).
´
´
A.
Gomez-Suarez,
Y.
Oonishi,
A.
R.
Martin,
S. V. C. Vummaleti, D. J. Nelson, D. B. Cordes,
A. M. Z. Slawin, L. Cavallo, S. P. Nolan and A. Poater,
Chem.–Eur. J., 2016, 22, 1125.
8 The dual activation pathway was recently supported by
examples of cooperation of different metals: (a) F. Lazreg,
Notes and references
1 D. Weber and M. R. Gagne, in Homogeneous Gold Catalysis,
Book Series: Topics in Current Chemistry-Series, ed. L. M.
Slaughter, Springer-Verlag, Berling, 2015, vol. 357, p. 167.
2 (a) D. J. Gorin and F. D. Toste, Nature, 2007, 446, 395; (b)
M. Anania, L. Jasikova, J. Jasik and J. Roithova, Org.
Biomol. Chem., 2017, 15, 7841; (c) E. Andris,
P. C. Andrikopoulos, J. Schulz, J. Turek, A. Ruzicka,
J. Roithova and L. Rulisek, J. Am. Chem. Soc., 2018, 140, 2316.
3 (a) A. Corma, A. Leyva-Perez and M. J. Sabater, Chem. Rev.,
2011, 111, 1657; (b) M. N. Hopkinson, A. Tlahuext-Aca and
F. Glorius, Acc. Chem. Res., 2016, 49, 2261; (c) Z. T. Zheng,
Z. X. Wang, Y. L. Wang and L. M. Zhang, Chem. Soc. Rev.,
´
S. Guidone, A. Gomez-Herrera, F. Nahrab and
C. S. J. Cazin, Dalton Trans., 2017, 46, 2439; (b)
´
´
O. F. Gonzalez-Belman, J. O. C. Jimenez-Halla, F. Nahra,
C. S. J. Cazin and A. Poater, Catal. Sci. Technol., 2018, 8, 3638.
ˇ´
´
´
´
9 (a) L. Jasıkova, M. Anania, S. Hybelbauerova and J. Roithova,
ˇ´
J. Am. Chem. Soc., 2015, 137, 13647; (b) J. Schulz, J. Jasık,
´
A. Gray and J. Roithova, Chem.–Eur. J., 2016, 22, 9827; (c)
M. Anania, L. Jasikova, J. Jasik and J. Roithova, Org.
Biomol. Chem., 2017, 15, 7841.
2016, 45, 4448; (d) W. W. Zi and F. D. Toste, Chem. Soc. 10 (a) S. P. Nolan, Acc. Chem. Res., 2011, 44, 91; (b) N. Marion,
Rev., 2016, 45, 4467; (e) A. M. Asiri and A. S. K. Hashmi,
Chem. Soc. Rev., 2016, 45, 4471; (f) A. Furstner, Angew.
Chem., Int. Ed., 2018, 57, 4215.
R. S. Ramon and S. P. Nolan, J. Am. Chem. Soc., 2009, 131,
448.
11 A. Gomez-Suarez, R. S. Ramon, A. M. Z. Slawin and
S. P. Nolan, Dalton Trans., 2012, 41, 5461.
4 (a) A. S. K. Hashmi, Angew. Chem., Int. Ed., 2008, 47, 6754; (b)
´
ˇ´
M. Bandini, A. Bottoni, M. Chiarucci, G. Cera and 12 J. Roithova, A. Gray, E. Andris, J. Jasık and D. Gerlich, Acc.
G. P. Miscione, J. Am. Chem. Soc., 2012, 134, 20690; (c) Chem. Res., 2016, 49, 223.
M. M. Hansmann, M. Rudolph, F. Rominger and 13 For comparison, see a study of gold complexes with
A. S. K. Hashmi, Angew. Chem., Int. Ed., 2013, 52, 2593; (d)
A. Zhdanko and M. E. Maier, Angew. Chem., Int. Ed., 2014,
enolethers: Y. Zhu, C. S. Day and A. C. Jones,
Organometallics, 2012, 31, 7332.
53, 7760; (e) M. Q. Jia and M. Bandini, ACS Catal., 2015, 5, 14 E. Mizushima, K. Sato, T. Hayashi and M. Tanaka, Angew.
1638; (f) M. Trinchillo, P. Belanzoni, L. Belpassi,
Chem., Int. Ed., 2002, 41, 4563.
L. Biasiolo, V. Busico, A. D'Arnora, L. D'Amore, A. Del 15 T. Riley and F. A. Long, J. Am. Chem. Soc., 1962, 84, 522.
Zotto, F. Tarantelli, A. Tuzi and D. Zuccaccia, 16 (a) H. Kurouchi and D. A. Singleton, Nat. Chem., 2018, 10,
Organometallics, 2016, 35, 641; (g) J. E. M. N. Klein,
237; (b) H. R. Aziz and D. A. Singleton, J. Am. Chem. Soc.,
2017, 139, 5965; D. A. Singleton and A. A. Thomas, J. Am.
Chem. Soc., 1995, 117, 9357.
¨
G. Knizia, L. Nunes dos Santos Comprido, J. Kastner and
A. S. K. Hashmi, Chem.–Eur. J., 2017, 23, 16097–16103; (h)
M. E. de Orbe, L. Amenos, M. S. Kirillova, Y. H. Wang, 17 M. Kumar, G. B. Hammond and B. Xu, Org. Lett., 2014, 16,
V. Lopez-Carrillo, F. Maseras and A. M. Echavarren, J. Am. 3452.
Chem. Sci.
This journal is © The Royal Society of Chemistry 2019