ꢀ
Stoichiometric Reductive C N Bond Formation of ArylgoldACTHNUTRGNEU(GN III) Complexes with N-Nucleophiles
Chlorobis(triphenylphosphine)phenylgold
(III) chloride
and discussion. S. L., J. J. M., M. P., A.-S. R., C. J., D. S., N.
V. and M. L. work at CaRLa, which is a joint project of
BASF SE and the University of Heidelberg, being co-fi-
nanced by the University of Heidelberg, the State of Baden-
Wꢀrttemberg and BASF SE. Support of these institutions is
greatly acknowledged.
(4): hexane solution (10 mL) of benzene (5.76 g,
A
73.84 mmol) was added to a hexane suspension (20 mL) of
[AuCl3]2 (1.00 g, 1.64 mmol) at room temperature. The ini-
tial red color of the solution rapidly changed to brown-
orange. The solution was stirred for 30 min at room temper-
ature and then diethyl ether was added at once (10 mL).
The resulting suspension was filtered and the solution treat-
ed with a diethyl ether solution of triphenylphosphine
(95 mg, 3.62 mmol, 10 mL). The resulting yellow solution
was stirred at room temperature for an additional hour and
volatiles were then removed under vacuum. Recrystalliza-
tion of the residue from dichloromethane/hexane, washing
with diethyl ether and drying under vacuum afforded 4 as a
colorless solid; yield: 0.39 g (26%). Crystals suitable for X-
ray analysis were grown by slow diffusion of diethyl ether
into a dichloromethane solution of 4 at 48C. 1H NMR
(CDCl3): d=6.51 (bs, 2H, Ph-H), 6.74 (t, 1H, J=7.5 Hz, Ph-
H), 7.03 (d, 2H, J=7.5 Hz, Ph-H), 7.3–7.9 (m, 30H, PPh3-
H); 13C NMR (CDCl3): d=125.6, 128.6, 129.9, 131.6, 134.8;
31P{1H} NMR (CDCl3): d=31.3; HR-MS (ESI): m/z=
References
ꢀ
[1] For selected reviews on Au-catalyzed C H activation,
see: A. S. K. Hashmi, R. Salanthꢀ, T. M. Frost, L.
Schwarz, J.-H. Choi, Appl. Catal. A: General 2005, 291,
238–246; A. Fꢆrstner, P. W. Davis, Angew. Chem. 2007,
119, 3478–3519; Angew. Chem. Int. Ed. 2007, 46, 3410–
3449; A. Arcadi, Chem. Rev. 2008, 108, 3266–3325; R.
Skouta, C.-J. Li, Tetrahedron 2008, 64, 4917–4938;
M. M. Diaz-Requejo, P. J. Perez, Chem. Rev. 2008, 108,
3379–3394.
833.1547, calcd. for C42H35AuClP2ACTHUNGTRENNUNG
calcd. for C42H35AuCl2P2·CH2Cl2: C 54.11, H 3.91; found: C
54.16, H 3.93.
(MꢀCl)+: 834.1568; anal.
[2] C. Gonzalez-Arellano, A. Corma, M. Iglesias, F. San-
chez, Chem. Commun. 2005, 3451–3453; C. Gonzalez-
Arellano, A. Abad, A. Corma, H. Garcia, M. Iglesias,
F. Sanchez, Angew. Chem. 2007, 119, 1558–1560;
Angew. Chem. Int. Ed. 2007, 46, 1536–1538; M. Schu-
ler, F. Silva, C. Bobbio, A. Tessier, V. Gouverneur,
Angew. Chem. 2008, 120, 8045–8048; Angew. Chem.
Int. Ed. 2008, 47, 7927–7930; G. Zhang, Y. Peng, L.
Cui, L. Zhang, Angew. Chem. 2009, 121, 3158–3161;
Angew. Chem. Int. Ed. 2009, 48, 3112–3115; A. Igle-
sias, K. MuÇiz, Chem. Eur. J. 2009, 15, 10563–10569;
A. D. Melhado, W. E. Brenzovich Jr, A. D. Lackner,
F. D. Toste, J. Am. Chem. Soc. 2010, 132, 8885–8887;
G. Zhang, L. Cui, Y. Wang, L. Zhang, J. Am. Chem.
Soc. 2010, 132, 1474–1475; M. N. Hopkinson, A. Tessi-
er, A. Salisbury, G. T. Giuffredi, L. E. Combettes, A. D.
Gee, V. Gouverneur, Chem. Eur. J. 2010, 16, 4739–
4743; W. E. Brenzovich Jr, D. Benitez, A. D. Lackner,
H. P. Shunatona, E. Tkatchouk, W. A. Goddard III,
F. D. Toste, Angew. Chem. 2010, 122, 5651–5654;
Angew. Chem. Int. Ed. 2010, 49, 5519–5522.
[3] F. Zamora, P. Amo-Ochoa, B. Fischer, A. Schimanski,
B. Lippert, Angew. Chem. 1999, 111, 2415–2417;
Angew. Chem. Int. Ed. 1999, 38, 2274–2275; A. S. K.
Hashmi, L. Schwarz, J.-H. Choi, T. M. Frost, Angew.
Chem. 2000, 112, 2382–2385; Angew. Chem. Int. Ed.
2000, 39, 2285–2288; Z. Shi, C. He, J. Org. Chem. 2004,
69, 3669–3671; T. Watanabe, S. Oishi, N. Fujii, H.
Ohno, Org. Lett. 2007, 9, 4821–4824; Z. Li, D. A. Cap-
retto, R. O. Rahaman, C. He, J. Am. Chem. Soc. 2007,
129, 12058–12059; A. Kar, N. Mangu, H. M. Kaiser, M.
Beller, M. K. Tse, Chem. Commun. 2008, 386–388.
[4] P. Lu, T. C. Boorman, A. M. Z. Slawin, I. Larrosa, J.
Am. Chem. Soc. 2010, 132, 5580–5581; S. Gaillard,
A. M. Z. Slawin, S. P. Nolan, Chem. Commun. 2010, 46,
2742–2744; I. I. F. Boogaerts, S. P. Nolan, J. Am. Chem.
Soc. 2010, 132, 8858–8859.
General Procedure for the Reaction of 2 with Various
N-Nucleophiles to Yield 5a–j
To an oven-dried mininertTM vial were added 2 (30 mg,
67 mmol, 1 equiv.) and NaOAc (27 mg, 330 mmol, 5 equiv.).
In cases where the N-nucleophile was a solid, the N-nucleo-
phile was added to the mininertTM vial in solid form
(266 mmol, 4 equiv.). The flask was then sealed under argon,
and n-decane (10 mg) and THF (6 mL) were added to the
reaction mixture via syringe. In cases where the N-nucleo-
phile was a liquid, the N-nucleophile was added to the reac-
tion flask via syringe (266 mmol, 4 equiv.). The vial was
promptly placed in a 708C oil bath and stirred for 24 h. The
yield of 5a–j was determined by GC. For determination of
response factors and calculation of GC yields, see Support-
ing Information.[22]
Reaction to Afford 4-Phenylmorpholine (5c) on a
Preparative Scale
Under argon to an oven-dried Carius tube were added di-
chloro(2,6-lutidine)phenylgoldACTHUNTGRNEUNG(III) (2, 136 mg, 300 mmol),
NaOAc (123 mg, 1.5 mmol) and THF (27 mL). Morpholine
(105 mL, 1.2 mmol) was added to the reaction mixture via sy-
ringe. The vial was promptly placed in a pre-heated oil bath
(708C) and stirred for 24 h. After filtration of the reaction
mixture over celite and removal of volatiles under vacuum,
the crude reaction mixture was purified by flash chromatog-
raphy (pentane/diethyl ether=7:3) to afford 5c; yield: 45 mg
1
(92%); H NMR (CDCl3):): d=3.17 (t, J=4 Hz, 4H), 3.88 (t,
J=4 Hz, 4H), 6.91 (m, 3H), 7.30 (t, J=8 Hz, 2H).
Acknowledgements
[5] M. S. Kharasch, H. S. Isbell, J. Am. Chem. Soc. 1931,
53, 3053–3059.
The authors would like to thank Profs. A. Stephen K.
Hashmi and Kenneth G. Caulton for insightful suggestions
[6] P. W. J. de Graaf, J. Boersma, G. J. M. van der Kerk, J.
Organomet. Chem. 1976, 105, 399–406.
Adv. Synth. Catal. 2010, 352, 2993 – 3000
ꢃ 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2999