ACS Medicinal Chemistry Letters
Letter
(16) Smith, R. A. J.; Porteous, C. M.; Gane, A. M.; Murphy, M. P.
Delivery of bioactive molecules to mitochondria in vivo. Proc. Natl.
Acad. Sci. U. S. A. 2003, 100, 5407−5412.
(32) Tait, S. W. G.; Green, D. R. In vivo and in vitro determination
of cell death markers in neurons. Nat. Rev. Mol. Cell Biol. 2010, 11,
621−632.
(33) Petronilli, V.; Miotto, G.; Canton, M.; Brini, M.; Colonna, R.;
Bernardi, P.; Di Lisa, F. Transient and long-lasting openings of the
mitochondrial permeability transition pore can be monitored directly
in intact cells by changes in mitochondrial calcein fluorescence.
Biophys. J. 1999, 76, 725−734.
(17) Zielonka, J.; Joseph, J.; Sikora, A.; Hardy, M.; Ouari, O.;
Vasquez-Vivar, J.; Cheng, G.; Kalyanaraman, B.; Lopez, M.
Mitochondria-targeted triphenylphosphonium-based compounds:
syntheses, mechanisms of action, and therapeutic and diagnostic
applications. Chem. Rev. 2017, 117, 10043−10120.
(34) Mallick, A.; More, P.; Syed, M. M. K.; Basu, S. Nanoparticle-
Mediated Mitochondrial Damage Induces Apoptosis in Cancer. ACS
Appl. Mater. Interfaces 2016, 8, 13218−13231.
(18) Wisnovsky, S.; Jean, S. R.; Liyanage, S.; Schimmer, A.; Kelley, S.
O. Mitochondrial DNA repair and replication proteins revealed by
targeted chemical probes. Nat. Chem. Biol. 2016, 12, 567−573.
̌
(35) Chipuk, J. E.; Green, D. R. How do BCL-2 proteins induce
mitochondrial outer membrane permeabilization? Trends Cell Biol.
2008, 18, 157−164.
́
(19) Skrtic, M.; Sriskanthadevan, S.; Jhas, B.; Gebbia, M.; Wang, X.;
Wang, Z.; Hurren, R.; Jitkova, Y.; Gronda, M.; Maclean, N.; Lai, C.
K.; Eberhard, Y.; Bartoszko, J.; Spagnuolo, P.; Rutledge, A. C.; Datti,
A.; Ketela, T.; Moffat, J.; Robinson, B. H.; Cameron, J. H.; Wrana, J.;
Eaves, C. J.; Minden, M. D.; Wang, J. C.; Dick, J. E.; Humphries, K.;
Nislow, C.; Giaever, G.; Schimmer, A. D. Inhibition of mitochondrial
translation as a therapeutic strategy for human acute myeloid
leukemia. Cancer Cell 2011, 20, 674−688.
(36) Nguyen, M.; Marcellus, R. C.; Roulston, A.; Watson, M.;
́
Serfass, L.; Murthy Madiraju, S. R.; Goulet, D.; Viallet, J.; Belec, L.;
Billot, X.; Acoca, S.; Purisima, E.; Wiegmans, A.; Cluse, L.; Johnstone,
R. W.; Beauparlant, P.; Shore, G. C. Small Molecule Obatoclax
(GX15−070) Antagonizes MCL-1 and Overcomes MCL-1-Mediated
Resistance to Apoptosis. Proc. Natl. Acad. Sci. U. S. A. 2007, 104,
19512−19517.
(20) Wang, D.; Wang, J.; Bonamy, G. M. C.; Meeusen, S.; Brusch, R.
G.; Turk, C.; Yang, P.; Schultz, P. G. A small molecule promotes
mitochondrial fusion in mammalian cells. Angew. Chem., Int. Ed. 2012,
51, 9302−9305.
(37) Maity, S.; Mukherjee, K.; Banerjee, A.; Mukherjee, S.;
Dasgupta, D.; Gupta, S. Inhibition of Porcine Pancreatic Amylase
Activity by Sulfamethoxazole: Structural and Functional Aspect.
Protein J. 2016, 35, 237−246.
(38) Helgren, T. R.; Hagen, T. J. Demonstration of AutoDock as an
Educational Tool for Drug Discovery. J. Chem. Educ. 2017, 94, 345−
349.
(21) Leanza, L.; Romio, M.; Becker, A. K.; Azzolini, M.; Trentin, L.;
̀
Manago, A.; Venturini, E.; Zaccagnino, A.; Mattarei, A.; Carraretto,
L.; Urbani, A.; Kadow, S.; Biasutto, L.; Martini, V.; Severin, F.;
Peruzzo, R.; Trimarco, V.; Egberts, J. H.; Hauser, C.; Visentin, A.;
Semenzato, G.; Kalthoff, H.; Zoratti, M.; Gulbins, E.; Paradisi, C.;
Szabo, I. Direct pharmacological targeting of a mitochondrial ion
channel selectively kills tumor cells in vivo. Cancer Cell 2017, 31,
516−531.
(39) Wu, D.; Yotnda, P. Production and detection of reactive oxygen
species (ROS) in cancers. J. Visualized Exp. 2011, No. e3357.
(40) Koczor, C. A.; Shokolenko, I. N.; Boyd, A. K.; Balk, S. P.;
Wilson, G. L.; LeDoux, S. P. Mitochondrial DNA damage initiates a
cell cycle arrest by a Chk2-associated mechanism in mammalian cells.
J. Biol. Chem. 2009, 284, 36191−36201.
(22) Park, S.; Baek, K.; Shin, I.; Shin, I. Subcellular Hsp70 inhibitors
promote cancer cell death via different mechanisms. Cell Chem. Biol.
2018, 25, 1242−1254.
(41) Czabotar, P. E.; Lessene, G.; Strasser, A.; Adams, J. M. Control
of apoptosis by the BCL-2 protein family: implications for physiology
and therapy. Nat. Rev. Mol. Cell Biol. 2014, 15, 49−63.
(23) Patil, S.; Kuman, M. M.; Palvai, S.; Sengupta, P.; Basu, S.
Impairing powerhouse in colon cancer cells by hydrazide−hydrazone-
based small molecule. ACS Omega 2018, 3, 1470−1481.
(42) Marino, G.; Niso-Santano, M.; Baehrecke, E. H.; Kroemer, G.
̃
(24) Furstner, A. Chemistry and biology of roseophilin and the
̈
Self-consumption: the interplay of autophagy and apoptosis. Nat. Rev.
Mol. Cell Biol. 2014, 15, 81−94.
prodigiosin alkaloids: a survey of the last 2500 years. Angew. Chem.,
Int. Ed. 2003, 42, 3582−3603.
(43) Li, P.; Nijhawan, D.; Budihardjo, I.; Srinivasula, S. M.; Ahmad,
M.; Alnemri, E. S. X.; Wang, X. Cytochrome c and dATP-dependent
formation of Apaf-1/caspase-9 complex initiates an apoptotic protease
cascade. Cell 1997, 91, 479−489.
(25) Sessler, J. L.; Eller, L. R.; Cho, W.; Nicolaou, S.; Aguilar, A.;
Lee, J. T.; Lynch, V. M.; Magda, D. J. Synthesis, anion-binding
properties, and in vitro anticancer activity of prodigiosin analogues.
Angew. Chem. 2005, 117, 6143−6146.
́
́
(26) Montaner, B.; Perez-Tomas, R. The prodigiosins: a new family
of anticancer drugs. Curr. Cancer Drug Targets 2003, 3, 57−65.
(27) Montaner, B.; Navarro, S.; Pique, M.; Vilaseca, M.; Martinell,
M.; Giralt, E.; Gil, J.; Perez-Tomas, R. Prodigiosin from the
supernatant of Serratia marcescens induces apoptosis in haemato-
poietic cancer cell lines. Br. J. Pharmacol. 2000, 131, 585−593.
(28) Schimmer, A. D.; O’Brien, S.; Kantarjian, H.; Brandwein, J.;
Cheson, B. D.; Minden, M. D.; Yee, K.; Ravandi, F.; Giles, F.; Schuh,
A.; Gupta, V.; Andreeff, M.; Koller, C.; Chang, H.; Kamel-Reid, S.;
Berger, M.; Viallet, J.; Borthakur, G. A Phase I Study of the Pan Bcl-2
Family Inhibitor Obatoclax Mesylate in Patients with Advanced
Hematologic Malignancies. Clin. Cancer Res. 2008, 14, 8295−8301.
(29) O’Brien, S. M.; Claxton, D. F.; Crump, M.; Faderl, S.; Kipps,
T.; Keating, M. J.; Viallet, J.; Cheson, B. D. Phase I Study of
Obatoclax Mesylate (GX15−070), a Small Molecule Pan-Bcl-2 Family
Antagonist, in Patients with Advanced Chronic Lymphocytic
Leukemia. Blood 2009, 113, 299−305.
(30) Mallick, A.; More, P.; Ghosh, S.; Chippalkatti, R.; Chopade, B.
A.; Lahiri, M.; Basu, S. Dual drug conjugated nanoparticle for
simultaneous targeting of mitochondria and nucleus in cancer cells.
ACS Appl. Mater. Interfaces 2015, 7, 7584−7598.
(31) Palvai, S.; More, P.; Mapara, N.; Basu, S. Chimeric
Nanoparticle: A Platform for Simultaneous Targeting of Phosphati-
dylinositol-3-Kinase Signaling and Damaging DNA in Cancer Cells.
ACS Appl. Mater. Interfaces 2015, 7, 18327−18335.
F
ACS Med. Chem. Lett. XXXX, XXX, XXX−XXX