Bioconjugate Chemistry
Article
(
20) Vaishya, R. D., Mandal, A., Patel, S., and Mitra, A. K. (2015)
into the hydrolytic degradation of poly(lactic acid): Participation of
the alcohol terminus. Polymer 42, 2795−2802.
Extended release microparticle-in-gel formulation of octreotide: Effect
of polymer type on acylation of peptide during in vitro release. Int. J.
Pharm. 496, 676.
(42) Brunner, A., Mader, K., and Gopferich, A. (1999) pH and
osmotic pressure inside biodegradable microspheres during erosion.
Pharm. Res. 16, 847−853.
(
21) Pfister, D., and Morbidelli, M. (2014) Process for protein
PEGylation. J. Controlled Release 180, 134−149.
22) Roberts, M. J., Bentley, M. D., and Harris, J. M. (2012)
Chemistry for peptide and protein PEGylation. Adv. Drug Delivery Rev.
4, 116−127.
23) Pasut, G., and Veronese, F. M. (2012) State of the art in
(43) Li, L., and Schwendeman, S. (2005) Mapping neutral
microclimate pH in PLGA microspheres. J. Controlled Release 101,
163−173.
(44) Shenderova, A., Burke, T. G., and Schwendeman, S. P. (1999)
The acidic microclimate in poly(lactide-co-glycolide) microspheres
stabilizes camptothecins. Pharm. Res. 16, 241−248.
(
6
(
PEGylation: The great versatility achieved after forty years of research.
J. Controlled Release 161, 461−472.
(45) Satoh, T., and Hosokawa, M. (2006) Structure, function and
regulation of carboxylesterases. Chem.-Biol. Interact. 162, 195−211.
(46) Rudakova, E. V., Boltneva, N. P., and Makhaeva, G. F. (2011)
Comparative analysis of esterase activities of human, mouse, and rat
blood. Bull. Exp. Biol. Med. 152, 73−75.
(
24) Gong, Y., Leroux, J., and Gauthier, M. A. (2015) Releasable
conjugation of polymers to proteins. Bioconjugate Chem. 26, 1172−
181.
25) Peleg-Shulman, T., Tsubery, H., Mironchik, M., Fridkin, M.,
1
(
Schreiber, G., and Shechter, Y. (2004) Reversible PEGylation: A novel
technology to release native interferon alpha 2 over a prolonged time
period. J. Med. Chem. 47, 4897−4904.
(47) Sonkaria, S., Boucher, G., Florez-Olvarez, J., Said, B., Hussain, S.,
Ostler, E. L., Gul, S., Thomas, E. W., Resmini, M., Gallacher, G., and
Brocklehurst, K. (2004) Evidence for ’lock and key’ character in an
anti-phosphonate hydrolytic antibody catalytic site augmented by non-
reaction centre recognition: Variation in substrate selectivity between
an anti-phosphonate antibody, an anti-phosphate antibody and two
hydrolytic enzymes. Biochem. J. 381, 125−130.
(
26) Erfani-Jabarian, L., Dinarvand, R., Rouini, M. R., Atyabi, F.,
Amini, M., Mohammadhosseini, N., Shafiee, A., and Foroumadi, A.
2012) PEGylation of octreotide using an alpha, beta-unsaturated-beta
-mono-sulfone functionalized PEG reagent. Iran J. Pharm. Res. 11,
47−753.
27) Na, D. H., and DeLuca, P. P. (2005) PEGylation of octreotide:
(
’
7
(
(48) Anderson, J., Byrne, T., Woelfel, K. J., Meany, J. E., Spyridis, G.
T., and Pocker, Y. (1994) The hydrolysis of p-nitrophenyl acetate - a
versatile reaction to study enzyme-kinetics. J. Chem. Educ. 71, 715−
I. separation of positional isomers and stability against acylation by
7
18.
poly(D,L-lactide-co-glycolide). Pharm. Res. 22, 736−742.
(
28) Na, D. H., Lee, K. C., and DeLuca, P. P. (2005) PEGylation of
octreotide: II. effect of N-terminal mono-PEGylation on biological
activity and pharmacokinetics. Pharm. Res. 22, 743−749.
(
(
29) Hermanson, G. (2008) Bioconjugate techniques, London.
30) Liu, Y., Ghassemi, A. H., Hennink, W. E., and Schwendeman, S.
P. (2012) The microclimate pH in poly(D,L-lactide-co-hydroxymethyl
glycolide) microspheres during biodegradation. Biomaterials 33, 7584−
7
593.
(
31) Fu, K., Pack, D., Klibanov, A., and Langer, R. (2000) Visual
evidence of acidic environment within degrading poly(lactic-co-
glycolic acid) (PLGA) microspheres. Pharm. Res. 17, 100−106.
(
32) Ahn, J. H., Park, E. J., Lee, H. S., Lee, K. C., and Na, D. H.
(
2011) Reversible blocking of amino groups of octreotide for the
inhibition of formation of acylated peptide impurities in poly(lactide-
co-glycolide) delivery systems. AAPS PharmSciTech 12, 1220−1226.
(
33) Vaishya, R. D., Mandal, A., Gokulgandhi, M., Patel, S., and
Mitra, A. K. (2015) Reversible hydrophobic ion-paring complex
strategy to minimize acylation of octreotide during long-term delivery
from PLGA microparticles. Int. J. Pharm. 489, 237−45.
(
34) Kratz, F., Muller, I. A., Ryppa, C., and Warnecke, A. (2008)
Prodrug strategies in anticancer chemotherapy. ChemMedChem 3, 20−
3.
35) Blencowe, C. A., Russell, A. T., Greco, F., Hayes, W., and
5
(
Thornthwaite, D. W. (2011) Self-immolative linkers in polymeric
delivery systems. Polym. Chem. 2, 773−790.
(
36) Wang, W., and Alexander, C. (2008) Self-immolative polymers.
Angew. Chem., Int. Ed. 47, 7804−7806.
(
37) Roth, M. E., Green, O., Gnaim, S., and Shabat, D. (2015)
Dendritic, oligomeric, and polymeric self-immolative molecular
amplification. Chem. Rev., 150910115924009.
(
38) Lim, E., Kang, H., Jung, H., and Park, E. (2007) Anti-angiogenic,
anti-inflammatory and anti-nociceptive activity of 4-hydroxybenzyl
alcohol. J. Pharm. Pharmacol. 59, 1235−1240.
(
39) Euranto, E. K. (1969) Esterification and ester hydrolysis. In
Carboxylic Acids and Esters, pp 505−588, John Wiley & Sons, Ltd.
(
40) Reubsaet, J. L. E., Beijnen, J. H., Bult, A., Vanderhouwen, O. A.
G. J., Teeuwsen, J., Koster, E. H. M., and Underberg, W. J. M. (1995)
Degradation kinetics of antagonist [Arg6, D-Trp7,9, MePhe8]-
substance-P {6−11} in aqueous solutions. Anal. Biochem. 227, 334−
3
(
41.
41) de Jong, S. J., Arias, E., Rijkers, D.T. S., van Nostrum, C. F.,
Kettenes-van den Bosch, J., and Hennink, W. E. (2001) New insights
J
Bioconjugate Chem. XXXX, XXX, XXX−XXX