Journal of the American Chemical Society
Article
Scheme 2. Gram Scale Reaction and Isoxazoline Reduction
AUTHOR INFORMATION
*
*
*
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
The work described was supported by project funding from
RIKEN (Y.S. and M.S.), Grant-in-Aid for Scientific Research
■
Scheme 3. Isoxazoline Hemiacetals Do Not Racemize via
Tautomerization
(
B) 17H02213 (Y.S.), Award GM R35 GM118055 from the
National Institutes of General Medical Sciences (J.S.J.), and an
NSF EAPSI/JSPS Summer Program Fellowship (S.L.B.).
RIKEN Hokusai GreatWave (GW) provided the computer
resources for the DFT calculations.
REFERENCES
■
Such structures would appear to be quite vulnerable toward
racemization via facile keto−enol tautomerization because of
the high C−H acidity of the methine proton (7 ⇆ 8). The
obtention of isoxazoline adducts 3 and a downstream adduct
such as 6k with high enantiomeric enrichment allows us to
draw conclusions regarding the intervention of the equilibria
depicted in Scheme 3. We hypothesize that the lack of
racemization stems from the high stability of the isoxazoline
hemiacetal that disfavors ring opening. Circumstantial evidence
against the formation of the acyclic oxime 7 is the constant
product diastereomeric ratio as a function of time: ring
opening/ring closure would presumably change the diastereo-
meric composition. The kinetic reluctance to form the oxime 7
may stem from the system’s preference to avoid the creation of
a highly electrophilic α-keto ester in the presence of multiple
electronegative atoms/functional groups. The isoxazoline
hemiacetal thus insulates a potentially labile stereocenter from
undesired racemization.
(
5
1) (a) Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014,
7, 10257−10274. (b) Bioactive Heterocyclic Compound Classes:
̈
Pharmaceuticals; Dinges, J., Jurgin, D., Eds.; Wiley-VCH: Weinheim,
Germany, 2012. (c) Berthet, M.; Cheviet, T.; Dujardin, G.; Parrot, I.;
Martinez, J. Chem. Rev. 2016, 116, 15235−15283.
(2) (a) Heterocycles in Natural Product Synthesis; Majumdar, K. C.,
Chattopadhyay, S. K., Eds.; Wiley-VCH: Weinhem, Germany, 2011.
(
b) Bioactive Natural Products: Chemistry and Biology; Brahmachari, G.,
Ed.; Wiley-VCH: Weinheim, Germany, 2015.
3) (a) 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; John
Wiley and Sons: New York, 1984; Vols 1 and 2. (b) Nitrile Oxides,
Nitrones, and Nitronates in Organic Synthesis: Novel Strategies in
Synthesis, 2nd ed.; Feuer, H., Ed.; John Wiley and Sons: Hoboken, NJ,
(
2
(
008.
4) (a) Kanemasa, S.; Kobayashi, S.; Nishiuchi, M.; Yamamoto, H.;
Wada, E. Tetrahedron Lett. 1991, 32, 6367−6370. (b) Bode, J. W.;
Carreira, E. M. J. Org. Chem. 2001, 66, 6410−6424.
(5) Examples of asymmetric 1,3-dipolar cycloadditions: (a) Seerden,
J.-P. G.; Schotte op Reimer, A. W. A.; Scheeren, H. W. Tetrahedron
Lett. 1994, 35, 4419−4422. (b) Simonsen, K. B.; Bayon
G.; Gothelf, K. V.; Jørgensen, K. A. J. Am. Chem. Soc. 1999, 121,
845−3853. (c) Ashizawa, T.; Ohtsuki, N.; Miura, T.; Ohya, M.;
Shinozaki, T.; Ikeno, T.; Yamada, T. Heterocycles 2006, 68, 1801−
810. (d) Jiao, P.; Nakashima, D.; Yamamoto, H. Angew. Chem., Int.
Ed. 2008, 47, 2411−2413. For reviews on asymmetric 1,3-dipolar
cycloadditions see (e) Hashimoto, T.; Maruoka, K. Chem. Rev. 2015,
115, 5366−5412. (f) Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. 1998,
98, 863−909. (g) Stanley, L. M.; Sibi, M. P. Chem. Rev. 2008, 108,
887−2902. (h) Gothelf, K. V.; Jørgensen, K. A. Chem. Commun.
000, 1449−1458. (i) Adrio, J.; Carretero, J. C. Chem. Commun. 2014,
0, 12434−12446.
́
, P.; Hazell, R.
SUMMARY
■
3
We have developed an enantioselective [3 + 2] cycloaddition
reaction between nitrile oxides and transiently generated
enolates of α-keto esters catalyzed by a chiral copper(II)−
diamine complex. The catalyst system was found to be
compatible with in situ nitrile oxide generation. This constitutes
the first catalytic enantioselective preparation of this unique
class of heterocycles, which can be transformed into interesting
lactams. With this data in hand, we are currently assessing the
reactivity of the 5-hydroxy-2-isoxazolines in other downstream
transformations in addition to studying the mechanism of this
transformation in detail. These results will be reported in due
course.
1
2
2
5
(
6) β-Keto esters: (a) Hamashima, Y.; Hotta, D.; Sodeoka, M. J. Am.
Chem. Soc. 2002, 124, 11240−11241. (b) Hamashima, Y.; Yagi, K.;
Takano, H.; Tamas, L.; Sodeoka, M. J. Am. Chem. Soc. 2002, 124,
4530−14531. (c) Hamashima, Y.; Suzuki, T.; Takano, H.; Shimura,
Y.; Sodeoka, M. J. Am. Chem. Soc. 2005, 127, 10164−10165.
d) Sasamoto, N.; Dubs, C.; Hamashima, Y.; Sodeoka, M. J. Am.
́
1
ASSOCIATED CONTENT
Supporting Information
(
■
*
S
Chem. Soc. 2006, 128, 14010−14011. (e) Umebayashi, N.;
Hamashima, Y.; Hashizume, D.; Sodeoka, M. Angew. Chem., Int. Ed.
008, 47, 4196−4199. α-Keto esters: (f) Nakamura, A.; Lectard, S.;
Hashizume, D.; Hamashima, Y.; Sodeoka, M. J. Am. Chem. Soc. 2010,
2
Experimental procedures and spectral, analytical, and
Crystallographic data for 3k (CIF)
Crystallographic data for 6k (CIF)
1
32, 4036−4037. (g) Nakamura, A.; Lectard, S.; Shimizu, R.;
Hamashima, Y.; Sodeoka, M. Tetrahedron: Asymmetry 2010, 21,
1682−1687. (h) Suzuki, S.; Kitamura, Y.; Lectard, S.; Hamashima, Y.;
Sodeoka, M. Angew. Chem., Int. Ed. 2012, 51, 4581−4585. (i) Steward,
8
665
J. Am. Chem. Soc. 2017, 139, 8661−8666